53 lines
2.2 KiB
Java
53 lines
2.2 KiB
Java
package dynamic_programming;
|
||
/**
|
||
* 题目: 221. 最大正方形 (maximalSquare)
|
||
* 描述:在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
|
||
*
|
||
示例 1:
|
||
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
|
||
输出:4
|
||
|
||
* 链接:https://leetcode.cn/problems/maximal-square/
|
||
*/
|
||
//不会
|
||
public class MaximalSquare {
|
||
/**
|
||
* 那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:
|
||
*
|
||
* 如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;
|
||
*
|
||
* 如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
|
||
*
|
||
* dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1
|
||
*
|
||
* 作者:力扣官方题解
|
||
* 链接:https://leetcode.cn/problems/maximal-square/solutions/234964/zui-da-zheng-fang-xing-by-leetcode-solution/
|
||
* 来源:力扣(LeetCode)
|
||
* 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
|
||
* @param matrix
|
||
* @return
|
||
*/
|
||
public int maximalSquare(char[][] matrix) {
|
||
int maxSide = 0;
|
||
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
|
||
return maxSide;
|
||
}
|
||
int rows = matrix.length, columns = matrix[0].length;
|
||
int[][] dp = new int[rows][columns];
|
||
for (int i = 0; i < rows; i++) {
|
||
for (int j = 0; j < columns; j++) {
|
||
if (matrix[i][j] == '1') {
|
||
if (i == 0 || j == 0) {
|
||
dp[i][j] = 1;
|
||
} else {
|
||
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
|
||
}
|
||
maxSide = Math.max(maxSide, dp[i][j]);
|
||
}
|
||
}
|
||
}
|
||
int maxSquare = maxSide * maxSide;
|
||
return maxSquare;
|
||
}
|
||
}
|