import tensorflow as tf import os import numpy as np from .processImg import process_image_file def detectxray(imagepath): weightspath = "models/COVIDNet-CXR4-A" metaname = "model.meta" ckptname = "model-18540" n_classes = "3" in_tensorname = "input_1:0" out_tensorname = "norm_dense_1/Softmax:0" input_size = 480 top_percent = 0.08 mapping = {'normal': 0, 'pneumonia': 1, 'COVID-19': 2} inv_mapping = {0: 'normal', 1: 'pneumonia', 2: 'COVID-19'} mapping_keys = list(mapping.keys()) sess = tf.Session() tf.get_default_graph() saver = tf.train.import_meta_graph(os.path.join(weightspath, metaname)) saver.restore(sess, os.path.join(weightspath, ckptname)) graph = tf.get_default_graph() image_tensor = graph.get_tensor_by_name(in_tensorname) pred_tensor = graph.get_tensor_by_name(out_tensorname) x = process_image_file(imagepath, input_size, top_percent=top_percent) x = x.astype('float32') / 255.0 feed_dict = {image_tensor: np.expand_dims(x, axis=0)} pred = sess.run(pred_tensor, feed_dict=feed_dict) prediction = inv_mapping[pred.argmax(axis=1)[0]] pred_normal = round(pred[0][mapping['normal']], 3) pred_pneu = round(pred[0][mapping['pneumonia']], 3) pred_covid = round(pred[0][mapping['COVID-19']], 3) return prediction,pred_normal,pred_pneu,pred_covid