2025-07-12 17:58:58 +08:00
|
|
|
|
|
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
### 定理2
|
|
|
|
|
多智能体随机网络矩阵奇异值信号系统具有线性特征。
|
|
|
|
|
|
|
|
|
|
#### 证明
|
|
|
|
|
根据定理1,奇异值序列$\sigma_{\tilde{\kappa}}(A_t)$服从高斯分布$\mathcal{N}(m_{\tilde{\kappa}}, 2\sigma_{\tilde{\kappa}}^2)$,其协方差结构满足:
|
|
|
|
|
$$
|
|
|
|
|
\gamma_{\tilde{\kappa}}(h) = 2\sigma_{\tilde{\kappa}}^2\delta_h^0
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
定义中心化变量:
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t = \sigma_{\tilde{\kappa}}(A_t) - m_{\tilde{\kappa}}
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
可表示为:
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
\tilde{\sigma}_t = \sqrt{2}\sigma_{\tilde{\kappa}}\varepsilon_t, \quad \varepsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0,1)
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
#### 线性系统验证
|
|
|
|
|
该系统为MA(0)过程,系统增益$h_0 = \sqrt{2}\sigma_{\tilde{\kappa}}$,满足:
|
|
|
|
|
1. **齐次性**:
|
|
|
|
|
$$a\tilde{\sigma}_t = h_0(a\varepsilon_t)$$
|
|
|
|
|
2. **叠加性**:
|
|
|
|
|
$$\tilde{\sigma}_t^{(1)} + \tilde{\sigma}_t^{(2)} = h_0(\varepsilon_t^{(1)} + \varepsilon_t^{(2)})$$
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
#### 结论
|
|
|
|
|
奇异值序列的完整表示:
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
\sigma_{\tilde{\kappa}}(A_t) = m_{\tilde{\kappa}} + h_0\varepsilon_t
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
|
|
|
|
其中:
|
2025-08-06 22:17:46 +08:00
|
|
|
|
- $m_{\tilde{\kappa}}$为稳态偏置项
|
|
|
|
|
- $h_0\varepsilon_t$为线性系统响应
|
|
|
|
|
|
|
|
|
|
根据线性系统定义(需引用文献),同时满足齐次性与可加性即构成线性系统,故得证。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### ② 定理2修订(线性系统特征)
|
|
|
|
|
|
|
|
|
|
#### 原MA(0)情形回顾
|
|
|
|
|
|
|
|
|
|
当$\gamma_k(h)=2\sigma_k^2\delta_h$时,
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t=\sigma_k(A_t)-m_k=\sqrt{2}\sigma_k\varepsilon_t, \quad \varepsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0,1)
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
#### 新协方差结构下的表示
|
|
|
|
|
|
|
|
|
|
当$\gamma_k(h)=C_h$(允许$C_h\neq0$),根据Wiener-Kolmogorov表示定理:
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t=\sum_{h=-\infty}^{+\infty} b_h w_{t-h} \tag{1}
|
|
|
|
|
$$
|
|
|
|
|
其中$\{b_h\}\in\ell^2$满足:
|
|
|
|
|
$$
|
|
|
|
|
\gamma_k(h)=\sum_{\ell=-\infty}^{+\infty} b_\ell b_{\ell+h} \tag{2}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
#### 线性系统验证
|
|
|
|
|
|
|
|
|
|
设系统传递函数$H(z)=\sum_h b_h z^{-h}$:
|
|
|
|
|
|
|
|
|
|
1. **齐次性**
|
|
|
|
|
$$
|
|
|
|
|
a\tilde{\sigma}_t=a\sum_h b_h w_{t-h}=\sum_h b_h (a w_{t-h})=H(z)\{a w_t\}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
2. **叠加性**
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t^{(1)}+\tilde{\sigma}_t^{(2)}=\sum_h b_h(w_{t-h}^{(1)}+w_{t-h}^{(2)})=H(z)\{w_t^{(1)}+w_t^{(2)}\}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
故$\{\sigma_k(A_t)\}$仍是LTI系统输出,但系统响应$\{b_h\}$需通过(2)式确定。
|
|
|
|
|
|
|
|
|
|
---
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
### 性质对比
|
|
|
|
|
|
|
|
|
|
| 性质 | $\gamma_k(h)=2\sigma_k^2\delta_h$ | $\gamma_k(h)=C_h$ |
|
|
|
|
|
| -------- | --------------------------------- | -------------------------------- |
|
|
|
|
|
| 宽平稳 | ✅ | ✅ |
|
|
|
|
|
| 白噪声 | ✅ | ❌ |
|
|
|
|
|
| 系统类型 | MA(0) | 通用LTI(可能MA($\infty$)) |
|
|
|
|
|
| 谱密度 | $S(f)=2\sigma_k^2$ | $S(f)=\sum_h C_h e^{-j2\pi f h}$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 随机网络稳态奇异值的平稳性证明
|
|
|
|
|
|
|
|
|
|
#### 1. 稳态奇异值分布特性
|
|
|
|
|
|
|
|
|
|
当随机网络进入稳态后,其矩阵序列$\{A_t\}$的任意奇异值$\sigma_k(A_t)$服从高斯分布:
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
\sigma_k(A_t) \sim \mathcal{N}(m_k, \gamma_k(0))
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
其中参数满足:
|
|
|
|
|
|
|
|
|
|
- **均值**:$m_k = (N-1)\mu_k + v_k + \frac{\sigma_k^2}{\mu_k}$
|
|
|
|
|
($N$为网络规模,$\mu_k,v_k,\sigma_k$为网络参数)
|
|
|
|
|
- **方差**:$\gamma_k(0) = 2\sigma_k^2$
|
|
|
|
|
|
|
|
|
|
#### 2. 宽平稳性验证
|
|
|
|
|
|
|
|
|
|
对任意时刻$t$:
|
|
|
|
|
|
|
|
|
|
1. **均值稳定性**:
|
|
|
|
|
$$
|
|
|
|
|
\mathbb{E}[\sigma_k(A_t)] = m_k \quad \text{(常数)}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
2. **协方差结构**:
|
|
|
|
|
|
|
|
|
|
- 当$h=0$时:
|
|
|
|
|
$$
|
|
|
|
|
\text{Cov}(\sigma_k(A_t), \sigma_k(A_t)) = \gamma_k(0)
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
- 当$h \neq 0$时:
|
|
|
|
|
$$
|
|
|
|
|
\text{Cov}(\sigma_k(A_t), \sigma_k(A_{t+h})) = \gamma_k(h)=0
|
|
|
|
|
$$
|
|
|
|
|
(由稳态下矩阵的独立性保证)
|
|
|
|
|
|
|
|
|
|
#### 3. 结论
|
|
|
|
|
|
|
|
|
|
自协方差函数$\gamma_k(h)$仅依赖于时滞$h$,因此奇异值信号序列$\{\sigma_k(A_t)\}$满足宽平稳过程的定义。
|
|
|
|
|
|
|
|
|
|
---
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
**注**:本证明基于以下假设:
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
1. 网络规模$N$足够大,使得高斯逼近有效
|
|
|
|
|
2. 稳态下矩阵序列$\{A_t\}$具有独立性
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 定理2
|
|
|
|
|
多智能体随机网络矩阵奇异值信号系统具有线性特征。
|
|
|
|
|
|
|
|
|
|
#### 证明
|
|
|
|
|
根据定理1,奇异值序列$\sigma_{\tilde{\kappa}}(A_t)$服从高斯分布$\mathcal{N}(m_{\tilde{\kappa}}, 2\sigma_{\tilde{\kappa}}^2)$,其协方差结构满足:
|
|
|
|
|
$$
|
|
|
|
|
\gamma_{\tilde{\kappa}}(h) = 2\sigma_{\tilde{\kappa}}^2\delta_h^0
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-08-06 22:17:46 +08:00
|
|
|
|
|
|
|
|
|
定义中心化变量:
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t = \sigma_{\tilde{\kappa}}(A_t) - m_{\tilde{\kappa}}
|
|
|
|
|
$$
|
|
|
|
|
可表示为:
|
|
|
|
|
$$
|
|
|
|
|
\tilde{\sigma}_t = \sqrt{2}\sigma_{\tilde{\kappa}}\varepsilon_t, \quad \varepsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0,1)
|
2025-07-30 21:47:44 +08:00
|
|
|
|
$$
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
#### 线性系统验证
|
|
|
|
|
该系统为MA(0)过程,系统增益$h_0 = \sqrt{2}\sigma_{\tilde{\kappa}}$,满足:
|
|
|
|
|
1. **齐次性**:
|
|
|
|
|
$$a\tilde{\sigma}_t = h_0(a\varepsilon_t)$$
|
|
|
|
|
2. **叠加性**:
|
|
|
|
|
$$\tilde{\sigma}_t^{(1)} + \tilde{\sigma}_t^{(2)} = h_0(\varepsilon_t^{(1)} + \varepsilon_t^{(2)})$$
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
#### 结论
|
|
|
|
|
奇异值序列的完整表示:
|
|
|
|
|
$$
|
|
|
|
|
\sigma_{\tilde{\kappa}}(A_t) = m_{\tilde{\kappa}} + h_0\varepsilon_t
|
|
|
|
|
$$
|
|
|
|
|
其中:
|
|
|
|
|
- $m_{\tilde{\kappa}}$为稳态偏置项
|
|
|
|
|
- $h_0\varepsilon_t$为线性系统响应
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
根据线性系统定义(需引用文献),同时满足齐次性与可加性即构成线性系统,故得证。
|
2025-07-12 17:58:58 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-07-30 21:47:44 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
……由协方差结构 γ_k(h)=2σ_k^2δ_h^0 可知,中心化变量
|
|
|
|
|
$$
|
|
|
|
|
\tilde σ_t = σ_k(A_t)-m_k,\qquad
|
|
|
|
|
\mathbb E[\tilde σ_t]=0,\; \mathrm{Cov}(\tilde σ_t,\tilde σ_{t+h})=
|
|
|
|
|
2σ_k^{2}\delta_h^{0}.
|
|
|
|
|
$$
|
2025-07-30 21:47:44 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
**根据 Wold 分解定理①**,任何零均值、纯非确定性的宽平稳过程都可以唯一表示为
|
2025-07-30 21:47:44 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
$$
|
|
|
|
|
\tilde σ_t=\sum_{j=0}^{\infty}ψ_j\;ε_{t-j},
|
|
|
|
|
\qquad ε_t\stackrel{i.i.d.}{\sim}\mathcal N(0,1),\
|
|
|
|
|
\sum_{j=0}^{\infty}|ψ_j|^2<\infty.
|
|
|
|
|
$$
|
2025-07-30 21:47:44 +08:00
|
|
|
|
|
2025-08-06 22:17:46 +08:00
|
|
|
|
而在本情形下 $\gamma_k(h)=0\,(h\neq 0)$,因此
|
|
|
|
|
$$
|
|
|
|
|
ψ_0=\sqrt{2}\,σ_k,\quad ψ_j=0\;(j\ge 1),
|
|
|
|
|
$$
|
|
|
|
|
退化为一个 **MA(0)** 过程:
|
|
|
|
|
$$
|
|
|
|
|
\boxed{\;\tilde σ_t=\sqrt{2}\,σ_k\,ε_t\;}
|
|
|
|
|
$$
|
|
|
|
|
……
|