Commit on 2025/03/23 周日 16:39:22.08

This commit is contained in:
zhangsan 2025-03-23 16:39:22 +08:00
parent 6722fcea38
commit 7eaec483da
6 changed files with 1084 additions and 515 deletions

View File

@ -356,12 +356,15 @@ git config --global credential.helper store //将凭据保存到磁盘上(明
**如果不小心commit了如何撤销** **如果不小心commit了如何撤销**
到项目根目录git bash here 例:如果在添加`.gitignore`文件前不小心提交了`.idea`文件夹,到项目根目录git bash here
```text ```text
git rm -r --cached 'dictory'/ git rm -r --cached -f .idea
git commit -m "Remove .idea from tracking"
``` ```
![](https://pic.bitday.top/i/2025/03/19/u68fal-2.png)在.gitignore文件进行添加 ![](https://pic.bitday.top/i/2025/03/19/u68fal-2.png)在.gitignore文件进行添加
**为什么`.gitignore`文件不放在`.git`文件夹中?** **为什么`.gitignore`文件不放在`.git`文件夹中?**
@ -371,8 +374,6 @@ git rm -r --cached 'dictory'/
### 撤销Git版本控制 ### 撤销Git版本控制
直接把项目文件夹中的.git文件夹删除即可(开启查看隐藏文件夹可看到) 直接把项目文件夹中的.git文件夹删除即可(开启查看隐藏文件夹可看到)

View File

@ -989,21 +989,12 @@ rm -rf /root/data/docker_data/typecho # 完全删除映射到本地的数据
### 主题
Joe主题https://github.com/HaoOuBa/Joe Joe主题https://github.com/HaoOuBa/Joe
[Joe再续前缘主题 - 搭建本站同款网站 - 易航博客](https://blog.yihang.info/archives/18.html) [Joe再续前缘主题 - 搭建本站同款网站 - 易航博客](https://blog.yihang.info/archives/18.html)
markdown编辑器插件https://xiamp.net/archives/aaeditor-is-another-typecho-editor-plugin.html
- 关闭'开启公式显示'将公式渲染交给markdownParse
markdown解析器插件[mrgeneralgoo/typecho-markdown: A markdown parse plugin for typecho.](https://github.com/mrgeneralgoo/typecho-markdown)
- 确保代码块\```后面紧跟着语言,如\```java否则无法正确显示。
- 确保公式块$$是
修改文章详情页的上方信息: 修改文章详情页的上方信息:
`typecho/usr/themes/Joe/module/single/batten.php` `typecho/usr/themes/Joe/module/single/batten.php`
@ -1057,6 +1048,48 @@ if (!defined('__TYPECHO_ROOT_DIR__')) {
`typecho/usr/themes/Joe/assets/js/joe.single.js`原版: 显示弹窗,点叉后消失
```text
{
document.querySelector('.joe_detail__article').addEventListener('copy', () => {
autolog.log(`本文版权属于 ${Joe.options.title} 转载请标明出处!`, 'warn', false);
});
}
```
显示5秒后消失
```
document.querySelector('.joe_detail__article').addEventListener('copy', () => {
// 显示 autolog 消息
autolog.log(`本文版权属于 ${Joe.options.title} 转载请标明出处!`, 'warn', false);
// 5 秒后删除该消息
setTimeout(() => {
const warnElem = document.querySelector('.autolog-warn');
if (warnElem) {
warnElem.remove(); // 或者使用 warnElem.style.display = 'none';
}
}, 5000);
});
```
### **markdown编辑与解析**
确保代码块\```后面紧跟着语言,如\```java否则无法正确显示。
markdown编辑器插件https://xiamp.net/archives/aaeditor-is-another-typecho-editor-plugin.html
- '开启公式显示!'
markdown解析器插件[mrgeneralgoo/typecho-markdown: A markdown parse plugin for typecho.](https://github.com/mrgeneralgoo/typecho-markdown)
- 有bug暂时废弃。
slug为页面缩略名在新增文章时可以传入默认是index数字。 slug为页面缩略名在新增文章时可以传入默认是index数字。
![image-20250320185818633](https://pic.bitday.top/i/2025/03/20/uqbaps-0.png) ![image-20250320185818633](https://pic.bitday.top/i/2025/03/20/uqbaps-0.png)

View File

@ -285,7 +285,116 @@ $$
### GNN的优点 ## GAT
图注意力网络GAT中最核心的运算**图注意力层**。它的基本思想是:
1. **线性变换**:先对每个节点的特征 $\mathbf{h}_i$ 乘上一个可学习的权重矩阵 $W$,得到变换后的特征 $W \mathbf{h}_i$。
2. **自注意力机制**:通过一个可学习的函数 $a$,对节点 $i$ 和其邻居节点 $j$ 的特征进行计算,得到注意力系数 $e_{ij}$。这里会对邻居进行遮蔽masked attention即只计算图中有边连接的节点对。
3. **归一化**:将注意力系数 $e_{ij}$ 通过 softmax 进行归一化,得到 $\alpha_{ij}$,表示节点 $j$ 对节点 $i$ 的重要性权重。
4. **聚合**:最后利用注意力系数加权邻居节点的特征向量,并经过激活函数得到新的节点表示 $\mathbf{h}_i'$。
5. **多头注意力**为增强表示能力可并行地执行多个独立的注意力头multi-head attention再将它们的结果进行拼接或在最后一层进行平均从而得到最终的节点表示。
### 注意力系数
1. **注意力系数(未归一化)**
$$
e_{ij} = a\bigl(W\mathbf{h}_i,\; W\mathbf{h}_j\bigr)
$$
2. **注意力系数的 softmax 归一化**
$$
\alpha_{ij} = \text{softmax}_j\bigl(e_{ij}\bigr)
= \frac{\exp\bigl(e_{ij}\bigr)}{\sum_{k \in \mathcal{N}_i} \exp\bigl(e_{ik}\bigr)}
$$
3. **具体的注意力计算形式(以单层前馈网络 + LeakyReLU 为例)**
$$
\alpha_{ij}
= \frac{\exp\Bigl(\text{LeakyReLU}\bigl(\mathbf{a}^\top \bigl[\;W\mathbf{h}_i \,\|\, W\mathbf{h}_j\bigr]\bigr)\Bigr)}
{\sum_{k\in \mathcal{N}_i} \exp\Bigl(\text{LeakyReLU}\bigl(\mathbf{a}^\top \bigl[\;W\mathbf{h}_i \,\|\, W\mathbf{h}_k\bigr]\bigr)\Bigr)}
$$
- 其中,$\mathbf{a}$ 为可学习的参数向量,$\|$ 表示向量拼接concatenation
**示例假设:**
- **节点特征**
假设每个节点的特征向量维度为 $F=2$。
$$
\mathbf{h}_i = \begin{bmatrix}1 \\ 0\end{bmatrix},\quad
\mathbf{h}_j = \begin{bmatrix}0 \\ 1\end{bmatrix},\quad
\mathbf{h}_k = \begin{bmatrix}1 \\ 1\end{bmatrix}.
$$
- **线性变换矩阵 $W$**
为了简化,我们令 $W$ 为单位矩阵(即 $W\mathbf{h} = \mathbf{h}$)。
$$
W = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}.
$$
- **可学习向量 $\mathbf{a}$**
假设 $\mathbf{a}$ 为 4 维向量,设
$$
\mathbf{a} = \begin{bmatrix}1 \\ 1 \\ 1 \\ 1\end{bmatrix}.
$$
- 激活函数使用 LeakyReLU负斜率设为0.2,但本例中结果为正数,所以不变)。
---
**计算步骤:**
1. **计算 $W\mathbf{h}_i$、$W\mathbf{h}_j$ 和 $W\mathbf{h}_k$**
$$
W\mathbf{h}_i = \begin{bmatrix}1 \\ 0\end{bmatrix},\quad
W\mathbf{h}_j = \begin{bmatrix}0 \\ 1\end{bmatrix}, \quad
W\mathbf{h}_k = \begin{bmatrix}1 \\ 1\end{bmatrix}
$$
2. **构造拼接向量并计算未归一化的注意力系数 $e_{ij}$ 和 $e_{ik}$**
- 对于邻居 $j$
$$
\bigl[W\mathbf{h}_i \,\|\, W\mathbf{h}_j\bigr] =
\begin{bmatrix}1 \\ 0 \\ 0 \\ 1\end{bmatrix}.
$$
内积计算:
$$
\mathbf{a}^\top \begin{bmatrix}1 \\ 0 \\ 0 \\ 1\end{bmatrix} = 1+0+0+1 = 2.
$$
经过 LeakyReLU正数保持不变
$$
e_{ij} = 2.
$$
- 对于邻居 $k$,同理得到:
$$
e_{ik} = 3.
$$
3. **计算 softmax 得到归一化注意力系数 $\alpha_{ij}$**
$$
\alpha_{ij} = \frac{\exp(2)}{\exp(2)+\exp(3)} = \frac{e^2}{e^2+e^3}\approx 0.269.
$$
同理:
$$
\alpha_{ik} = \frac{\exp(3)}{\exp(2)+\exp(3)} \approx 0.731.
$$
## GNN的优点
**参数共享** **参数共享**

View File

@ -487,517 +487,40 @@ $$
## 拉普拉斯变换 ## 拉普拉斯变换
![image-20240413112801149](https://pic.bitday.top/i/2025/03/19/u8f2b5-2.png) ### 拉普拉斯变换的定义
## 矩阵运算 对于一个给定的时间域函数 \( f(t) \),其拉普拉斯变换 \( F(s) \) 定义为:
### 特征值和特征向量
设矩阵:
$$
A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}
$$
步骤 1求特征值
构造特征方程:
$$
\det(A - \lambda I) = \det\begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} = (2-\lambda)(3-\lambda) - 0 = 0
$$
解得:
$$ $$
(2-\lambda)(3-\lambda) = 0 \quad \Longrightarrow \quad \lambda_1 = 2,\quad \lambda_2 = 3 F(s) = \int_{0}^{\infty} e^{-st}f(t) \, dt
$$ $$
步骤 2求特征向量 这里的 \( s \) 是一个复数,通常写作 $ s = \sigma + j\omega $,其中 $\sigma$ 和 $ \omega $ 分别是实部和虚部。
- 对于 $\lambda_1 = 2$ ### 拉普拉斯变换的作用
解方程:
$$ - **简化微分方程**:拉普拉斯变换可以将微分方程转换为代数方程,从而简化求解过程。
(A - 2I)\mathbf{x} = \begin{bmatrix} 2-2 & 1 \\ 0 & 3-2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - **系统分析**:在控制理论中,拉普拉斯变换用来分析系统的稳定性和频率响应。
$$ - **信号处理**:在信号处理中,拉普拉斯变换帮助分析信号的频谱和系统的滤波特性。
从第一行 $x_2 = 0$。因此特征向量可以写成: ### 例子:单一指数函数的拉普拉斯变换
$$ 假设有一个函数 $f(t) = e^{-at} $(其中 \( a \) 是一个正常数),我们想计算它的拉普拉斯变换。根据拉普拉斯变换的定义:
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\text{任意非零常数倍})
$$
- 对于 $\lambda_2 = 3$
解方程:
$$ $$
(A - 3I)\mathbf{x} = \begin{bmatrix} 2-3 & 1 \\ 0 & 3-3 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1+x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} F(s) = \int_{0}^{\infty} e^{-st}e^{-at} \, dt = \int_{0}^{\infty} e^{-(s+a)t} \, dt
$$
从第一行得 $-x_1 + x_2 = 0$ 或 $x_2 = x_1$。因此特征向量可以写成:
$$
\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (\text{任意非零常数倍})
$$
**设一个对角矩阵**
$$
D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}
$$
$$
\lambda_1 = d_1,\quad \lambda_2 = d_2
$$
对角矩阵的特征方程为:
$$
\det(D - \lambda I) = (d_1 - \lambda)(d_2 - \lambda) = 0
$$
因此特征值是:
$$ $$
\lambda_1 = d_1,\quad \lambda_2 = d_2
$$
- 对于 $\lambda_1 = d_1$,方程 $(D-d_1I)\mathbf{x}=\mathbf{0}$ 得到:
$$
\begin{bmatrix} 0 & 0 \\ 0 & d_2-d_1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ (d_2-d_1)x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
若 $d_1 \neq d_2$,则必须有 $x_2=0$,而 $x_1$ 可任意取非零值,因此特征向量为:
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$
- 对于 $\lambda_2 = d_2$,类似地解得:
$$
\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
### 矩阵乘法
**全连接神经网络**
![image-20250316145729703](https://pic.bitday.top/i/2025/03/19/u8fmco-2.png)
其中:
- $a^{(0)}$ 是输入向量,表示当前**层**的输入。
- $\mathbf{W}$ 是权重矩阵,表示输入向量到输出向量的线性变换。
- $b$ 是偏置向量,用于调整输出。
- $\sigma$ 是激活函数(如 ReLU、Sigmoid 等),用于引入非线性。
- **输入向量 $a^{(0)}$**
$$
a^{(0)} = \begin{pmatrix}
a_0^{(0)} \\
a_1^{(0)} \\
\vdots \\
a_n^{(0)}
\end{pmatrix}
$$
这是一个 $n+1$ 维的列向量,表示输入特征。
- **权重矩阵 $\mathbf{W}$**
$$
\mathbf{W} = \begin{pmatrix}
w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\
w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{k,0} & w_{k,1} & \cdots & w_{k,n} \\
\end{pmatrix}
$$
这是一个 $k \times (n+1)$ 的矩阵,其中 $k$ 是输出向量的维度,$n+1$ 是输入向量的维度。
- **偏置向量 $b$**
$$
b = \begin{pmatrix}
b_0 \\
b_1 \\
\vdots \\
b_k
\end{pmatrix}
$$
这是一个 $k$ 维的列向量,用于调整输出。
1. 在传统的连续时间 RNN 写法里,常见的是
$$ 这个积分可以解为:
\sum_{j} W_{ij} \, \sigma(x_j),
$$
这代表对所有神经元 $j$ 的激活 $\sigma(x_j)$ 做加权求和,再求和到神经元 $i$。
如果拆开来看,每个输出分量也都含一个求和 $\sum_{j}$
- 输出向量的第 1 个分量(记作第 1 行的结果):
$$
(W_r x)_1 = 0.3 \cdot x_1 + (-0.5) \cdot x_2 = 0.3 \cdot 2 + (-0.5) \cdot 1 = 0.6 - 0.5 = 0.1.
$$
- 输出向量的第 2 个分量(第 2 行的结果):
$$
(W_r x)_2 = 1.2 \cdot x_1 + 0.4 \cdot x_2 = 1.2 \cdot 2 + 0.4 \cdot 1 = 2.4 + 0.4 = 2.8.
$$
2. 在使用矩阵乘法时,你可以写成
$$
y = W_r \, \sigma(x),
$$
其中 $\sigma$ 表示对 $x$ 的各分量先做激活,接着用 $W_r$ 乘上去。这就是把“$\sum_j \dots$”用矩阵乘法隐藏了。
$$
\begin{pmatrix}
0.3 & -0.5\\
1.2 & \;\,0.4
\end{pmatrix}
\begin{pmatrix}
2\\
1
\end{pmatrix}
=
\begin{pmatrix}
0.3 \times 2 + (-0.5) \times 1\\[6pt]
1.2 \times 2 + 0.4 \times 1
\end{pmatrix}
=
\begin{pmatrix}
0.6 - 0.5\\
2.4 + 0.4
\end{pmatrix}
=
\begin{pmatrix}
0.1\\
2.8
\end{pmatrix}.
$$
### 奇异值
**定义**
对于一个 $m \times n$ 的矩阵 $A$,其奇异值是非负实数 $\sigma_1, \sigma_2, \ldots, \sigma_r$$r = \min(m, n)$),满足存在正交矩阵 $U$ 和 $V$,使得:
$$
A = U \Sigma V^T
$$
其中,$\Sigma$ 是对角矩阵,对角线上的元素即为奇异值。
---
**主要特点**
1. **非负性**:奇异值总是非负的。
2. 对角矩阵的奇异值是对角线元素的**绝对值**。
3. **降序排列**:通常按从大到小排列,即 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$。
4. **矩阵分解**奇异值分解SVD将矩阵分解为三个矩阵的乘积$U$ 和 $V$ 是正交矩阵,$\Sigma$ 是对角矩阵。
5. **应用广泛**:奇异值在数据降维、噪声过滤、图像压缩等领域有广泛应用。
---
**计算**
奇异值可以通过计算矩阵 $A^T A$ 或 $A A^T$ 的特征值的**平方根**得到。
**步骤 1计算 $A^T A$**
首先,我们计算矩阵 $A$ 的转置 $A^T$
$$
A^T = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix}
$$
然后,计算 $A^T A$
$$
A^T A = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}
$$
**步骤 2计算 $A^T A$ 的特征值**
接下来,我们计算 $A^T A$ 的特征值。特征值 $\lambda$ 满足以下特征方程:
$$
\det(A^T A - \lambda I) = 0
$$
即:
$$
\det \begin{pmatrix} 9 - \lambda & 0 \\ 0 & 16 - \lambda \end{pmatrix} = (9 - \lambda)(16 - \lambda) = 0
$$
解这个方程,我们得到两个特征值:
$$
\lambda_1 = 16, \quad \lambda_2 = 9
$$
**步骤 3计算奇异值**
奇异值是特征值的平方根,因此我们计算:
$$
\sigma_1 = \sqrt{\lambda_1} = \sqrt{16} = 4
$$
$$
\sigma_2 = \sqrt{\lambda_2} = \sqrt{9} = 3
$$
**结果**
矩阵 $A$ 的奇异值为 **4****3**
### 矩阵的迹
**迹的定义**
对于一个 $n \times n$ 的矩阵 $B$其迹trace定义为矩阵对角线元素之和
$$
\text{tr}(B) = \sum_{i=1}^n B_{ii}
$$
**迹与特征值的关系**
对于一个 $n \times n$ 的矩阵 $B$,其迹等于其特征值之和。即:
$$
\text{tr}(B) = \sum_{i=1}^n \lambda_i
$$
其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是矩阵 $B$ 的特征值。
**应用到 $A^* A$**
对于矩阵 $A^* A$(如果 $A$ 是实矩阵,则 $A^* = A^T$),它是一个半正定矩阵,其特征值是非负实数。
$A^* A$ 的迹还与矩阵 $A$ 的 Frobenius 范数有直接关系。具体来说:
$$
\|A\|_F^2 = \text{tr}(A^* A)
$$
**迹的基本性质**
迹是一个线性运算,即对于任意标量 $c_1, c_2$ 和矩阵 $A, B$,有:
$$
\text{tr}(c_1 A + c_2 B) = c_1 \text{tr}(A) + c_2 \text{tr}(B)
$$
对于任意矩阵 $A, B, C$,迹满足循环置换性质:
$$
\text{tr}(ABC) = \text{tr}(CAB) = \text{tr}(BCA)
$$
注意:迹的循环置换性**不**意味着 $\text{tr}(ABC) = \text{tr}(BAC)$,除非矩阵 $A, B, C$ 满足某些特殊条件(如对称性)。
### 酉矩阵
酉矩阵是一种复矩阵,其满足下面的条件:对于一个 $n \times n$ 的复矩阵 $U$,如果有
$$
U^* U = U U^* = I,
$$
其中 $U^*$ 表示 $U$ 的共轭转置(先转置再取复共轭),而 $I$ 是 $n \times n$ 的单位矩阵,那么 $U$ 就被称为酉矩阵。简单来说,酉矩阵在复内积空间中保持内积不变,相当于在该空间中的“旋转”或“反射”。
如果矩阵的元素都是实数,那么 $U^*$ 就等于 $U^T$(转置),这时酉矩阵就退化为**正交矩阵**。
考虑二维旋转矩阵
$$
U = \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}.
$$
当 $\theta$ 为任意实数时,这个矩阵满足
$$
U^T U = I,
$$
所以它是一个正交矩阵,同时也属于酉矩阵的范畴。
例如,当 $\theta = \frac{\pi}{4}$45°
$$
U = \begin{bmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{bmatrix}.
$$
### 对称非负矩阵分解
$$
A≈HH^T
$$
**1. 问题回顾**
给定一个**对称非负**矩阵 $A\in\mathbb{R}^{n\times n}$,我们希望找到一个**非负矩阵** $H\in\mathbb{R}^{n\times k}$ 使得
$$
A \approx HH^T.
$$
为此,我们可以**最小化目标函数(损失函数)**
$$
f(H)=\frac{1}{2}\|A-HH^T\|_F^2,
$$
其中 $\|\cdot\|_F$ 表示 Frobenius 范数,定义为矩阵所有元素的平方和的平方根。
$\| A - H H^T \|_F^2$ 表示矩阵 $A - H H^T$ 的所有元素的平方和。
**2. 梯度下降方法**
2.1 计算梯度
目标函数(损失函数)是
$$
f(H)=\frac{1}{2}\|A-HH^T\|_F^2.
$$
$$
\|M\|_F^2 = \operatorname{trace}(M^T M),
$$
因此,目标函数可以写成:
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^T\bigl(A-HH^T\bigr)\Bigr].
$$
注意到 $A$ 和$HH^T$ 都是对称矩阵,可以简化为:
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^2\Bigr].
$$
展开后得到
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[A^2 - 2AHH^T + (HH^T)^2\Bigr].
$$
其中 $\operatorname{trace}(A^2)$ 与 $H$ 无关,可以看作常数,不影响梯度计算。
**计算** $\nabla_H \operatorname{trace}(-2 A H H^T)$
$$
\nabla_H \operatorname{trace}(-2 A H H^T) = -4 A H
$$
**计算** $\nabla_H \operatorname{trace}((H H^T)^2)$
$$
\nabla_H \operatorname{trace}((H H^T)^2) = 4 H H^T H
$$
将两部分梯度合并:
$$
\nabla_H f(H) = \frac{1}{2}(4 H H^T H - 4 A H )= 2(H H^T H - A H)
$$
2.2 梯度下降更新
设学习率为 $\eta>0$,则梯度下降的**基本更新公式为**
$$
H \leftarrow H - \eta\, \nabla_H f(H) = H - 2\eta\Bigl(HH^T H - A H\Bigr).
$$
由于我们要求 $H$ 中的元素保持非负,所以每次更新之后通常需要进行**投影**
$$
H_{ij} \leftarrow \max\{0,\,H_{ij}\}.
$$
这种方法称为**投影梯度下降**,保证每一步更新后 $H$ 满足非负约束。
**3. 举例说明**
设对称非负矩阵:
$$
A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad k=1, \quad H \in \mathbb{R}^{2 \times 1}
$$
初始化 $H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,学习率 $\eta = 0.01$。
**迭代步骤**
1. **初始 \( H^{(0)} \):**
$$
H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad H^{(0)}(H^{(0)})^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
$$
目标函数值:
$$
f(H^{(0)}) = \frac{1}{2} \left( (2-1)^2 + 2(1-1)^2 + (2-1)^2 \right) = 1.
$$
2. **计算梯度:**
$$
HH^T H = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad AH = \begin{bmatrix} 3 \\ 3 \end{bmatrix},
$$
$$
\nabla_H f(H^{(0)}) = 2 \left( \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}.
$$
3. **更新 \( H \):**
$$
H^{(1)} = H^{(0)} - 2 \cdot 0.01 \cdot \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1.04 \\ 1.04 \end{bmatrix}.
$$
4. **更新后目标函数:**
$$
H^{(1)}(H^{(1)})^T = \begin{bmatrix} 1.0816 & 1.0816 \\ 1.0816 & 1.0816 \end{bmatrix},
$$
$$ $$
f(H^{(1)}) = \frac{1}{2} \left( (2-1.0816)^2 + 2(1-1.0816)^2 + (2-1.0816)^2 \right) \approx 0.8464. F(s) =
\begin{bmatrix}
\frac{e^{-(s+a)t}}{-(s+a)}
\end{bmatrix}_{0}^{\infty} = \frac{1}{s+a}
$$ $$
一次迭代后目标函数值从 $1.0$ 下降至 $0.8464$ 因为当 $ t \to \infty $ 时,$ e^{-(s+a)t} $ 趋向于 0前提是 $ Re(s+a) > 0 $(即 $s $ 的实部加 $ a $ 必须是正的)。

723
科研/线性代数.md Normal file
View File

@ -0,0 +1,723 @@
## 线性代数
### 线性变换
每列代表一个基向量,行数代码这个基向量所张成空间的维度,二行三列表示二维空间的三个基向量。
- 二维标准基矩阵(单位矩阵):
$$
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | \\ \mathbf{i} & \mathbf{j} \\ | & | \end{bmatrix}
$$
- 三维标准基矩阵(单位矩阵):
$$
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \\ | & | & | \end{bmatrix}
$$
#### **矩阵乘向量**
在 3blue1brown 的“线性代数的本质”系列中,他把矩阵乘向量的运算解释为**线性组合**和**线性变换**的过程。具体来说:
- **计算方法**
给定一个 $ m \times n $ 的矩阵 $ A $ 和一个 $ n $ 维向量 $ \mathbf{x} = [x_1, x_2, \dots, x_n]^T $,矩阵与向量的乘积可以表示为:
$$
A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n
$$
其中,$\mathbf{a}_i$ 表示 $ A $ 的第 $ i $ 列向量。也就是说,我们用向量 $\mathbf{x}$ 的各个分量作为权重,对矩阵的各列进行线性组合。
例如:矩阵 $ A $ 是一个二阶矩阵:
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
向量 $ \mathbf{x} $ 是一个二维列向量:
$$
\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}
$$
可以将这个乘法看作是用 $ x $ 和 $ y $ 这两个数,分别对矩阵的两列向量进行加权:
$$
A\mathbf{x} = x \cdot \begin{bmatrix} a \\ c \end{bmatrix} + y \cdot \begin{bmatrix} b \\ d \end{bmatrix}
$$
也就是说,矩阵乘向量的结果,是“矩阵每一列”乘以“向量中对应的分量”,再把它们加起来。
- **背后的思想**
1. **分解为基向量的组合**
任何向量都可以看作是标准基向量的线性组合。矩阵 $ A $ 在几何上代表了一个线性变换,而标准基向量在这个变换下会分别被映射到新的位置,也就是矩阵的各列。
2. **构造变换**
当我们用 $\mathbf{x}$ 的分量对这些映射后的基向量加权求和时,就得到了 $ \mathbf{x} $ 在变换后的结果。这种方式不仅方便计算,而且直观地展示了线性变换如何“重塑”空间——每一列告诉我们基向量被如何移动,然后这些移动按比例组合出最终向量的位置。
#### **矩阵乘矩阵**
当你有两个矩阵 $ A $ 和 $ B $,矩阵乘法 $ AB $ 实际上代表的是:
> 先对向量应用 $ B $ 的线性变换,再应用 $ A $ 的线性变换。
也就是说:
$$
(AB)\vec{v} = A(B\vec{v})
$$
**3blue1brown 的直觉解释:**
矩阵 B提供了新的**变换后基向量**
记住:矩阵的每一列,表示标准基向量 $ \mathbf{e}_1, \mathbf{e}_2 $ 在变换后的样子。
所以:
- $ B $ 是一个变换,它把空间“拉伸/旋转/压缩”成新的形状;
- $ A $ 接着又对这个已经变形的空间进行变换。
例:
$$
A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}
$$
- $ B $ 的列是:
- $ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $ → 第一个标准基向量变形后的位置
- $ \begin{bmatrix} -1 \\ 1 \end{bmatrix} $ → 第二个标准基向量变形后的位置
我们计算:
- $ A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} $
- $ A \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} $
所以:
$$
AB = \begin{bmatrix} 2 & -2 \\ 3 & 3 \end{bmatrix}
$$
这个新矩阵 $ AB $ 的列向量,表示标准基向量在经历了 **“先 B 再 A”** 的变换后,落在了哪里。
### 行列式
3blue1brown讲解行列式时核心在于用几何直观来理解行列式的意义
缩放比例!!!
**体积(或面积)的伸缩因子**
对于二维空间中的2×2矩阵行列式的绝对值表示该矩阵作为线性变换时对**单位正方形**施加变换后得到的平行四边形的面积。类似地对于三维空间中的3×3矩阵行列式的绝对值就是单位立方体变换后的平行六面体的体积。也就是说行列式告诉我们这个变换如何“拉伸”或“压缩”空间。
**方向的指示(有向面积或体积)**
行列式不仅仅给出伸缩倍数,还通过正负号反映了变换是否保持了原来的方向(正)还是发生了翻转(负)。例如,在二维中,如果行列式为负,说明变换过程中存在翻转(类似镜像效果)。
**变换的可逆性**
当行列式为零时,说明该线性变换把空间**压缩到了低维**(例如二维变一条线,三维变成一个平面或线),这意味着信息在变换过程中丢失,变换不可逆。
![image-20250323104603200](https://pic.bitday.top/i/2025/03/23/j1llgr-0.png)
### 逆矩阵、列空间、零空间
#### **逆矩阵**
逆矩阵描述了一个矩阵所代表的线性变换的**“反过程”**。假设矩阵 $A$ 对空间做了某种变换(比如旋转、拉伸或压缩),那么 $A^{-1}$ 就是把这个变换“逆转”,把变换后的向量再映射回原来的位置。
前提是$A$ 是可逆的,即它对应的变换不会把空间压缩到更低的维度。
#### 秩
秩等于矩阵列向量(或行向量)**所生成的空间的维数**。例如,在二维中,如果一个 $2 \times 2$ 矩阵的秩是 2说明这个变换把平面“充满”如果秩为 1则所有输出都落在一条直线上说明变换“丢失”了一个维度。
#### 列空间
列空间是矩阵所有列向量的线性组合所构成的集合(也可以说所有可能的**输出向量**$A\mathbf{x}$所构成的集合)。 比如一个二维变换的列空间可能是整个平面,也可能只是一条直线,这取决于矩阵的秩。
#### 零空间
零空间又称核、kernel是所有在该矩阵作用线性变换$A$)下变成零向量的**输入向量**的集合。
它展示了变换中哪些方向被“压缩”成了一个点(原点)。例如,在三维中,如果一个矩阵将所有向量沿某个方向压缩到零,那么这个方向构成了零空间。
零空间解释了$Ax=0$的解的集合,就是齐次的通解。如果满秩,零空间只有唯一解零向量。
#### 求解线性方程
设线性方程组写作
$$
A\mathbf{x} = \mathbf{b}
$$
这相当于在问:“有没有一个向量 $\mathbf{x}$ ,它经过矩阵 $A$ 的变换后,恰好落在 $\mathbf{b}$ 所在的位置?”
- 如果 $\mathbf{b}$ 落在 $A$ 的列空间内,那么就存在解。解可能是唯一的(当矩阵满秩时)或无穷多(当零空间非平凡时)。
- 如果 $\mathbf{b}$ 不在列空间内,则说明 $\mathbf{b}$ 不可能由 $A$ 的列向量线性组合得到,这时方程组无解。
- 唯一解对应于所有这些几何对象在一点相交;
- 无限多解对应于它们沿着某个方向重合;
- 无解则说明这些对象根本没有公共交点。
### 点积、哈达马积
**向量点积Dot Product**
3blue1brown认为两个向量的点乘就是将其中一个向量转为线性变换。
假设有两个向量
$$
\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}.
$$
$$
\mathbf{v} \cdot \mathbf{w} =\begin{bmatrix} v_1 & v_2 \end{bmatrix}\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}=v_1w_1 + v_2w_2..
$$
- **结果**
点积的结果是一个**标量**(即一个数)。
- **几何意义**
点积可以衡量两个向量的相似性,或者计算一个向量在另一个向量方向上的投影。
**哈达马积Hadamard Product**
- **定义**
对于两个向量 $\mathbf{u} = [u_1, u_2, \dots, u_n]$ 和 $\mathbf{v} = [v_1, v_2, \dots, v_n]$,它们的哈达马积定义为:
$$
\mathbf{u} \circ \mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n].
$$
- **结果**
哈达马积的结果是一个**向量**,其每个分量是对应位置的分量相乘。
- **几何意义**
哈达马积通常用于逐元素操作,比如在神经网络中对两个向量进行逐元素相乘。
矩阵也有哈达马积!。
### 特征值和特征向量
设矩阵:
$$
A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}
$$
步骤 1求特征值
构造特征方程:
$$
\det(A - \lambda I) = \det\begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} = (2-\lambda)(3-\lambda) - 0 = 0
$$
解得:
$$
(2-\lambda)(3-\lambda) = 0 \quad \Longrightarrow \quad \lambda_1 = 2,\quad \lambda_2 = 3
$$
步骤 2求特征向量
- 对于 $\lambda_1 = 2$
解方程:
$$
(A - 2I)\mathbf{x} = \begin{bmatrix} 2-2 & 1 \\ 0 & 3-2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
从第一行 $x_2 = 0$。因此特征向量可以写成:
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\text{任意非零常数倍})
$$
- 对于 $\lambda_2 = 3$
解方程:
$$
(A - 3I)\mathbf{x} = \begin{bmatrix} 2-3 & 1 \\ 0 & 3-3 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1+x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
从第一行得 $-x_1 + x_2 = 0$ 或 $x_2 = x_1$。因此特征向量可以写成:
$$
\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (\text{任意非零常数倍})
$$
**设一个对角矩阵**
$$
D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}
$$
$$
\lambda_1 = d_1,\quad \lambda_2 = d_2
$$
对角矩阵的特征方程为:
$$
\det(D - \lambda I) = (d_1 - \lambda)(d_2 - \lambda) = 0
$$
因此特征值是:
$$
\lambda_1 = d_1,\quad \lambda_2 = d_2
$$
- 对于 $\lambda_1 = d_1$,方程 $(D-d_1I)\mathbf{x}=\mathbf{0}$ 得到:
$$
\begin{bmatrix} 0 & 0 \\ 0 & d_2-d_1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ (d_2-d_1)x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
若 $d_1 \neq d_2$,则必须有 $x_2=0$,而 $x_1$ 可任意取非零值,因此特征向量为:
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$
- 对于 $\lambda_2 = d_2$,类似地解得:
$$
\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
### 矩阵乘法
**全连接神经网络**
![image-20250316145729703](https://pic.bitday.top/i/2025/03/23/j1lnso-0.png)
其中:
- $a^{(0)}$ 是输入向量,表示当前**层**的输入。
- $\mathbf{W}$ 是权重矩阵,表示输入向量到输出向量的线性变换。
- $b$ 是偏置向量,用于调整输出。
- $\sigma$ 是激活函数(如 ReLU、Sigmoid 等),用于引入非线性。
- **输入向量 $a^{(0)}$**
$$
a^{(0)} = \begin{pmatrix}
a_0^{(0)} \\
a_1^{(0)} \\
\vdots \\
a_n^{(0)}
\end{pmatrix}
$$
这是一个 $n+1$ 维的列向量,表示输入特征。
- **权重矩阵 $\mathbf{W}$**
$$
\mathbf{W} = \begin{pmatrix}
w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\
w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{k,0} & w_{k,1} & \cdots & w_{k,n} \\
\end{pmatrix}
$$
这是一个 $k \times (n+1)$ 的矩阵,其中 $k$ 是输出向量的维度,$n+1$ 是输入向量的维度。
- **偏置向量 $b$**
$$
b = \begin{pmatrix}
b_0 \\
b_1 \\
\vdots \\
b_k
\end{pmatrix}
$$
这是一个 $k$ 维的列向量,用于调整输出。
1. 在传统的连续时间 RNN 写法里,常见的是
$$
\sum_{j} W_{ij} \, \sigma(x_j),
$$
这代表对所有神经元 $j$ 的激活 $\sigma(x_j)$ 做加权求和,再求和到神经元 $i$。
如果拆开来看,每个输出分量也都含一个求和 $\sum_{j}$
- 输出向量的第 1 个分量(记作第 1 行的结果):
$$
(W_r x)_1 = 0.3 \cdot x_1 + (-0.5) \cdot x_2 = 0.3 \cdot 2 + (-0.5) \cdot 1 = 0.6 - 0.5 = 0.1.
$$
- 输出向量的第 2 个分量(第 2 行的结果):
$$
(W_r x)_2 = 1.2 \cdot x_1 + 0.4 \cdot x_2 = 1.2 \cdot 2 + 0.4 \cdot 1 = 2.4 + 0.4 = 2.8.
$$
2. 在使用矩阵乘法时,你可以写成
$$
y = W_r \, \sigma(x),
$$
其中 $\sigma$ 表示对 $x$ 的各分量先做激活,接着用 $W_r$ 乘上去。这就是把“$\sum_j \dots$”用矩阵乘法隐藏了。
$$
\begin{pmatrix}
0.3 & -0.5\\
1.2 & \;\,0.4
\end{pmatrix}
\begin{pmatrix}
2\\
1
\end{pmatrix}
=
\begin{pmatrix}
0.3 \times 2 + (-0.5) \times 1\\[6pt]
1.2 \times 2 + 0.4 \times 1
\end{pmatrix}
=
\begin{pmatrix}
0.6 - 0.5\\
2.4 + 0.4
\end{pmatrix}
=
\begin{pmatrix}
0.1\\
2.8
\end{pmatrix}.
$$
### 奇异值
**定义**
对于一个 $m \times n$ 的矩阵 $A$,其奇异值是非负实数 $\sigma_1, \sigma_2, \ldots, \sigma_r$$r = \min(m, n)$),满足存在正交矩阵 $U$ 和 $V$,使得:
$$
A = U \Sigma V^T
$$
其中,$\Sigma$ 是对角矩阵,对角线上的元素即为奇异值。
---
**主要特点**
1. **非负性**:奇异值总是非负的。
2. 对角矩阵的奇异值是对角线元素的**绝对值**。
3. **降序排列**:通常按从大到小排列,即 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$。
4. **矩阵分解**奇异值分解SVD将矩阵分解为三个矩阵的乘积$U$ 和 $V$ 是正交矩阵,$\Sigma$ 是对角矩阵。
5. **应用广泛**:奇异值在数据降维、噪声过滤、图像压缩等领域有广泛应用。
---
**计算**
奇异值可以通过计算矩阵 $A^T A$ 或 $A A^T$ 的特征值的**平方根**得到。
**步骤 1计算 $A^T A$**
首先,我们计算矩阵 $A$ 的转置 $A^T$
$$
A^T = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix}
$$
然后,计算 $A^T A$
$$
A^T A = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}
$$
**步骤 2计算 $A^T A$ 的特征值**
接下来,我们计算 $A^T A$ 的特征值。特征值 $\lambda$ 满足以下特征方程:
$$
\det(A^T A - \lambda I) = 0
$$
即:
$$
\det \begin{pmatrix} 9 - \lambda & 0 \\ 0 & 16 - \lambda \end{pmatrix} = (9 - \lambda)(16 - \lambda) = 0
$$
解这个方程,我们得到两个特征值:
$$
\lambda_1 = 16, \quad \lambda_2 = 9
$$
**步骤 3计算奇异值**
奇异值是特征值的平方根,因此我们计算:
$$
\sigma_1 = \sqrt{\lambda_1} = \sqrt{16} = 4
$$
$$
\sigma_2 = \sqrt{\lambda_2} = \sqrt{9} = 3
$$
**结果**
矩阵 $A$ 的奇异值为 **4****3**
### 矩阵的迹
**迹的定义**
对于一个 $n \times n$ 的矩阵 $B$其迹trace定义为矩阵对角线元素之和
$$
\text{tr}(B) = \sum_{i=1}^n B_{ii}
$$
**迹与特征值的关系**
对于一个 $n \times n$ 的矩阵 $B$,其迹等于其特征值之和。即:
$$
\text{tr}(B) = \sum_{i=1}^n \lambda_i
$$
其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是矩阵 $B$ 的特征值。
**应用到 $A^* A$**
对于矩阵 $A^* A$(如果 $A$ 是实矩阵,则 $A^* = A^T$),它是一个半正定矩阵,其特征值是非负实数。
$A^* A$ 的迹还与矩阵 $A$ 的 Frobenius 范数有直接关系。具体来说:
$$
\|A\|_F^2 = \text{tr}(A^* A)
$$
**迹的基本性质**
迹是一个线性运算,即对于任意标量 $c_1, c_2$ 和矩阵 $A, B$,有:
$$
\text{tr}(c_1 A + c_2 B) = c_1 \text{tr}(A) + c_2 \text{tr}(B)
$$
对于任意矩阵 $A, B, C$,迹满足循环置换性质:
$$
\text{tr}(ABC) = \text{tr}(CAB) = \text{tr}(BCA)
$$
注意:迹的循环置换性**不**意味着 $\text{tr}(ABC) = \text{tr}(BAC)$,除非矩阵 $A, B, C$ 满足某些特殊条件(如对称性)。
### 酉矩阵
酉矩阵是一种复矩阵,其满足下面的条件:对于一个 $n \times n$ 的复矩阵 $U$,如果有
$$
U^* U = U U^* = I,
$$
其中 $U^*$ 表示 $U$ 的共轭转置(先转置再取复共轭),而 $I$ 是 $n \times n$ 的单位矩阵,那么 $U$ 就被称为酉矩阵。简单来说,酉矩阵在复内积空间中保持内积不变,相当于在该空间中的“旋转”或“反射”。
如果矩阵的元素都是实数,那么 $U^*$ 就等于 $U^T$(转置),这时酉矩阵就退化为**正交矩阵**。
考虑二维旋转矩阵
$$
U = \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}.
$$
当 $\theta$ 为任意实数时,这个矩阵满足
$$
U^T U = I,
$$
所以它是一个正交矩阵,同时也属于酉矩阵的范畴。
例如,当 $\theta = \frac{\pi}{4}$45°
$$
U = \begin{bmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{bmatrix}.
$$
### 对称非负矩阵分解
$$
A≈HH^T
$$
**1. 问题回顾**
给定一个**对称非负**矩阵 $A\in\mathbb{R}^{n\times n}$,我们希望找到一个**非负矩阵** $H\in\mathbb{R}^{n\times k}$ 使得
$$
A \approx HH^T.
$$
为此,我们可以**最小化目标函数(损失函数)**
$$
f(H)=\frac{1}{2}\|A-HH^T\|_F^2,
$$
其中 $\|\cdot\|_F$ 表示 Frobenius 范数,定义为矩阵所有元素的平方和的平方根。
$\| A - H H^T \|_F^2$ 表示矩阵 $A - H H^T$ 的所有元素的平方和。
**2. 梯度下降方法**
2.1 计算梯度
目标函数(损失函数)是
$$
f(H)=\frac{1}{2}\|A-HH^T\|_F^2.
$$
$$
\|M\|_F^2 = \operatorname{trace}(M^T M),
$$
因此,目标函数可以写成:
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^T\bigl(A-HH^T\bigr)\Bigr].
$$
注意到 $A$ 和$HH^T$ 都是对称矩阵,可以简化为:
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^2\Bigr].
$$
展开后得到
$$
f(H)=\frac{1}{2}\operatorname{trace}\Bigl[A^2 - 2AHH^T + (HH^T)^2\Bigr].
$$
其中 $\operatorname{trace}(A^2)$ 与 $H$ 无关,可以看作常数,不影响梯度计算。
**计算** $\nabla_H \operatorname{trace}(-2 A H H^T)$
$$
\nabla_H \operatorname{trace}(-2 A H H^T) = -4 A H
$$
**计算** $\nabla_H \operatorname{trace}((H H^T)^2)$
$$
\nabla_H \operatorname{trace}((H H^T)^2) = 4 H H^T H
$$
将两部分梯度合并:
$$
\nabla_H f(H) = \frac{1}{2}(4 H H^T H - 4 A H )= 2(H H^T H - A H)
$$
2.2 梯度下降更新
设学习率为 $\eta>0$,则梯度下降的**基本更新公式为**
$$
H \leftarrow H - \eta\, \nabla_H f(H) = H - 2\eta\Bigl(HH^T H - A H\Bigr).
$$
由于我们要求 $H$ 中的元素保持非负,所以每次更新之后通常需要进行**投影**
$$
H_{ij} \leftarrow \max\{0,\,H_{ij}\}.
$$
这种方法称为**投影梯度下降**,保证每一步更新后 $H$ 满足非负约束。
**3. 举例说明**
设对称非负矩阵:
$$
A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad k=1, \quad H \in \mathbb{R}^{2 \times 1}
$$
初始化 $H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,学习率 $\eta = 0.01$。
**迭代步骤**
1. **初始 \( H^{(0)} \):**
$$
H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad H^{(0)}(H^{(0)})^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
$$
目标函数值:
$$
f(H^{(0)}) = \frac{1}{2} \left( (2-1)^2 + 2(1-1)^2 + (2-1)^2 \right) = 1.
$$
2. **计算梯度:**
$$
HH^T H = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad AH = \begin{bmatrix} 3 \\ 3 \end{bmatrix},
$$
$$
\nabla_H f(H^{(0)}) = 2 \left( \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}.
$$
3. **更新 \( H \):**
$$
H^{(1)} = H^{(0)} - 2 \cdot 0.01 \cdot \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1.04 \\ 1.04 \end{bmatrix}.
$$
4. **更新后目标函数:**
$$
H^{(1)}(H^{(1)})^T = \begin{bmatrix} 1.0816 & 1.0816 \\ 1.0816 & 1.0816 \end{bmatrix},
$$
$$
f(H^{(1)}) = \frac{1}{2} \left( (2-1.0816)^2 + 2(1-1.0816)^2 + (2-1.0816)^2 \right) \approx 0.8464.
$$
一次迭代后目标函数值从 $1.0$ 下降至 $0.8464$

View File

@ -1,7 +1,187 @@
对于传统的 transductive GCN 模型来说,公式中的 $\tilde{A}$(包含自环的邻接矩阵)和 $\tilde{D}$(其对应的度矩阵)的大小通常是基于训练时整个图的结构,是固定的。 ---
## 该部分主要内容概述
在这部分(论文 2.1 节 “Graph Attentional Layer”作者提出了图注意力网络GAT中最核心的运算**图注意力层**。它的基本思想是:
1. **线性变换**:先对每个节点的特征 $\mathbf{h}_i$ 乘上一个可学习的权重矩阵 $W$,得到变换后的特征 $W \mathbf{h}_i$。
2. **自注意力机制**:通过一个可学习的函数 $a$,对节点 $i$ 和其邻居节点 $j$ 的特征进行计算,得到注意力系数 $e_{ij}$。这里会对邻居进行遮蔽masked attention即只计算图中有边连接的节点对。
3. **归一化**:将注意力系数 $e_{ij}$ 通过 softmax 进行归一化,得到 $\alpha_{ij}$,表示节点 $j$ 对节点 $i$ 的重要性权重。
4. **聚合**:最后利用注意力系数加权邻居节点的特征向量,并经过激活函数得到新的节点表示 $\mathbf{h}_i'$。
5. **多头注意力**为增强表示能力可并行地执行多个独立的注意力头multi-head attention再将它们的结果进行拼接或在最后一层进行平均从而得到最终的节点表示。
该部分给出的公式主要包括注意力系数的计算、softmax 归一化、多头注意力的聚合方式等,下面逐一用 Markdown 数学公式的形式列出。
---
## 公式列表Markdown 格式)
> **注意**:以下公式与论文中编号对应(如 (1)、(2)、(3)、(4)、(5)、(6) 等)。
1. **注意力系数(未归一化)**
$$
e_{ij} = a\bigl(W\mathbf{h}_i,\; W\mathbf{h}_j\bigr)
$$
2. **注意力系数的 softmax 归一化**
$$
\alpha_{ij} = \text{softmax}_j\bigl(e_{ij}\bigr)
= \frac{\exp\bigl(e_{ij}\bigr)}{\sum_{k \in \mathcal{N}_i} \exp\bigl(e_{ik}\bigr)}
$$
$\alpha_{ij}$表示节点 $i$ 对节点 $j$ 的注意力权重
3. **具体的注意力计算形式(以单层前馈网络 + LeakyReLU 为例)**
$$
\alpha_{ij}
= \frac{\exp\Bigl(\text{LeakyReLU}\bigl(\mathbf{a}^\top \bigl[\;W\mathbf{h}_i \,\|\, W\mathbf{h}_j\bigr]\bigr)\Bigr)}
{\sum_{k\in \mathcal{N}_i} \exp\Bigl(\text{LeakyReLU}\bigl(\mathbf{a}^\top \bigl[\;W\mathbf{h}_i \,\|\, W\mathbf{h}_k\bigr]\bigr)\Bigr)}
$$
其中,$\mathbf{a}$ 为可学习的参数向量,$\|$ 表示向量拼接concatenation
4. **单头注意力聚合(得到新的节点特征)**
$$
\mathbf{h}_i' = \sigma\Bigl(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \,W \mathbf{h}_j\Bigr)
$$
其中,$\sigma$ 表示非线性激活函数(如 ELU、ReLU 等),$\mathcal{N}_i$ 表示节点 $i$ 的邻居节点集合(可包含 $i$ 自身)。
5. **多头注意力(隐藏层时拼接)**
如果有 $K$ 个独立的注意力头,每个头输出 $\mathbf{h}_i'^{(k)}$,则拼接后的输出为:
$$
\mathbf{h}_i' =
\big\Vert_{k=1}^K
\sigma\Bigl(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{(k)} \, W^{(k)} \mathbf{h}_j\Bigr)
$$
其中,$\big\Vert$ 表示向量拼接操作,$\alpha_{ij}^{(k)}$、$W^{(k)}$ 分别为第 $k$ 个注意力头对应的注意力系数和线性变换。
6. **多头注意力(输出层时平均)**
在最终的输出层(例如分类层)通常会将多个头的结果做平均,而不是拼接:
$$
\mathbf{h}_i' =
\sigma\Bigl(
\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i}
\alpha_{ij}^{(k)} \, W^{(k)} \mathbf{h}_j
\Bigr)
$$
---
以上即是论文中 2.1 节Graph Attentional Layer出现的主要公式及其简要说明。
### 2. **GAT 的聚合方式**
- **GAT** 使用了一种**自适应的、可学习的注意力机制**来聚合节点及其邻居的信息。
- 具体来说GAT 的聚合公式为:
$$
h_i^{(l+1)} = \sigma\left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij} W h_j^{(l)}\right)
$$
其中:
- $\alpha_{ij}$ 是节点 $i$ 和节点 $j$ 之间的**注意力系数**,通过以下方式计算:
$$
\alpha_{ij} = \frac{\exp(\text{LeakyReLU}(a^T [W h_i \| W h_j]))}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp(\text{LeakyReLU}(a^T [W h_i \| W h_k]))}
$$
- $a$ 是一个可学习的注意力向量。
- $\|$ 表示特征拼接操作。
- $W$ 是可学习的权重矩阵。
- $\sigma$ 是非线性激活函数。
- **特点**
- GAT 的聚合权重是**动态的**,通过注意力机制学习得到。
- 权重是非对称的,且可以捕捉节点之间的复杂关系。
- 相当于对节点及其邻居进行了一种**加权信息传递**,权重由数据驱动。
---
### 3. **GCN 和 GAT 的对比**
| 特性 | GCN | GAT |
| ------------------ | ------------------------ | -------------------------- |
| **聚合方式** | 固定的加权平均 | 自适应的注意力加权 |
| **权重是否可学习** | 否(权重由节点度数决定) | 是(通过注意力机制学习) |
| **权重是否对称** | 是 | 否 |
| **表达能力** | 较弱(固定的聚合方式) | 较强(动态的聚合方式) |
| **计算复杂度** | 较低 | 较高(需要计算注意力系数) |
| **适用场景** | 简单的图结构任务 | 复杂的图结构任务 |
---
### 4. **直观理解**
- **GCN**
- 类似于对邻居节点进行“民主投票”,每个邻居的权重是固定的(由度数决定)。
- 适合处理节点度数分布均匀、关系相对简单的图。
- **GAT**
- 类似于对邻居节点进行“加权投票”,每个邻居的权重是动态学习的。
- 适合处理节点度数分布不均匀、关系复杂的图。
---
### 5. **总结**
- **GCN** 使用的是**固定的、归一化的加权平均**,权重由节点度数决定。
- **GAT** 使用的是**自适应的、可学习的注意力权重**,权重通过数据驱动的方式学习得到。
- GAT 的表达能力更强但计算复杂度也更高GCN 更简单高效,但表达能力相对较弱。
希望这个解释能帮助你更好地理解 GCN 和 GAT 的区别!如果还有疑问,欢迎继续讨论!
3blue1brown 的讲解试图让我们从几何和线性映射的角度来理解点乘,而不仅仅是将它看作一系列数的乘加运算。下面详细说明这一点。
假设有两个向量
$$
\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}.
$$
传统上,点乘定义为
$$
\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2.
$$
3blue1brown 的观点是:
- **将一个向量视为线性变换**
我们可以把 $\mathbf{v}$ 当作一个线性映射,它把任何向量 $\mathbf{w}$ 映射为一个实数,即
$$
T_{\mathbf{v}}(\mathbf{w}) = \mathbf{v}\cdot \mathbf{w}.
$$
这个映射 $T_{\mathbf{v}}$ 是一个**线性泛函**,它具有线性性:
$$
T_{\mathbf{v}}(a\mathbf{w}_1 + b\mathbf{w}_2) = aT_{\mathbf{v}}(\mathbf{w}_1) + bT_{\mathbf{v}}(\mathbf{w}_2).
$$
换句话说,$\mathbf{v}$ 变成了一个“工具”,通过这个工具我们可以“测量”任一向量在 $\mathbf{v}$ 方向上的分量大小。
- **几何直观**
如果我们记 $\theta$ 为 $\mathbf{v}$ 和 $\mathbf{w}$ 之间的夹角,则点乘也可以写作
$$
\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\|\|\mathbf{w}\|\cos\theta.
$$
这里,$\|\mathbf{w}\|\cos\theta$ 就是 $\mathbf{w}$ 在 $\mathbf{v}$ 方向上的投影长度。当我们用 $\|\mathbf{v}\|$ 乘上这个投影长度时,就得到了一个度量,这个度量告诉我们 $\mathbf{w}$ 在 $\mathbf{v}$ 方向上“有多大”的贡献。
- **矩阵乘法的视角**
我们也可以把点乘看作行向量和列向量的矩阵乘法:
$$
\mathbf{v}\cdot \mathbf{w} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}.
$$
在这个表达式中,$\begin{bmatrix} v_1 & v_2 \end{bmatrix}$ 就相当于一个将二维向量映射到实数的线性变换,也正是我们上面定义的 $T_{\mathbf{v}}(\cdot)$。
总结来说3blue1brown 强调的点乘本质是:
- 把固定的向量 $\mathbf{v}$ 转换成一个线性映射(或线性泛函),这个映射作用在任意向量 $\mathbf{w}$ 上,返回一个标量;
- 这个标量不仅包含了 $\mathbf{w}$ 在 $\mathbf{v}$ 方向上的“投影”信息,而且反映了两者之间的对齐程度(通过余弦函数体现);
- 因此,点乘不仅仅是数值运算,而是一个把向量转换成测量工具,从而揭示向量间角度和方向关系的过程。
然而,在归纳式设置下(例如在 GraphSAGE 或一些扩展的 GCN 模型中),当有新节点加入时,你可以构造一个包含新节点及其局部邻居的子图,然后重新计算该局部子图的 $\tilde{A}$ 和 $\tilde{D}$ 矩阵。这样就不需要对整个图做全局归一化,而是只关注新节点及其相关邻居的局部结构,从而生成新节点的表示。
**简洁总结:**
- **固定图Transductive**$\tilde{A}$ 和 $\tilde{D}$ 大小固定,因为它们对应整个图。
- **归纳式方法**:对于新节点,可以基于新节点和其选定的邻居构造局部子图,重新计算局部的 $\tilde{A}$ 和 $\tilde{D}$,从而实现在线生成表示。