# 线性代数 ## 线性变换 每列代表一个基向量,行数代码这个基向量所张成空间的维度,二行三列表示二维空间的三个基向量。 - 二维标准基矩阵(单位矩阵): $$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | \\ \mathbf{i} & \mathbf{j} \\ | & | \end{bmatrix} $$ - 三维标准基矩阵(单位矩阵): $$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \\ | & | & | \end{bmatrix} $$ ### **矩阵乘向量** 在 3blue1brown 的“线性代数的本质”系列中,他把矩阵乘向量的运算解释为**线性组合**和**线性变换**的过程。具体来说: - **计算方法** 给定一个 $ m \times n $ 的矩阵 $ A $ 和一个 $ n $ 维向量 $ \mathbf{x} = [x_1, x_2, \dots, x_n]^T $,矩阵与向量的乘积可以表示为: $$ A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n $$ 其中,$\mathbf{a}_i$ 表示 $ A $ 的第 $ i $ 列向量。也就是说,我们用向量 $\mathbf{x}$ 的各个分量作为权重,对矩阵的各列进行线性组合。 例如:矩阵 $ A $ 是一个二阶矩阵: $$ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$ 向量 $ \mathbf{x} $ 是一个二维列向量: $$ \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} $$ 可以将这个乘法看作是用 $ x $ 和 $ y $ 这两个数,分别对矩阵的两列向量进行加权: $$ A\mathbf{x} = x \cdot \begin{bmatrix} a \\ c \end{bmatrix} + y \cdot \begin{bmatrix} b \\ d \end{bmatrix} $$ 也就是说,矩阵乘向量的结果,是“矩阵每一列”乘以“向量中对应的分量”,再把它们加起来。 - **背后的思想** 1. **分解为基向量的组合**: 任何向量都可以看作是标准基向量的线性组合。矩阵 $ A $ 在几何上代表了一个线性变换,而标准基向量在这个变换下会分别被映射到新的位置,也就是矩阵的各列。 2. **构造变换**: 当我们用 $\mathbf{x}$ 的分量对这些映射后的基向量加权求和时,就得到了 $ \mathbf{x} $ 在变换后的结果。这种方式不仅方便计算,而且直观地展示了线性变换如何“重塑”空间——每一列告诉我们基向量被如何移动,然后这些移动按比例组合出最终向量的位置。 ### **矩阵乘矩阵** 当你有两个矩阵 $ A $ 和 $ B $,矩阵乘法 $ AB $ 实际上代表的是: > 先对向量应用 $ B $ 的线性变换,再应用 $ A $ 的线性变换。 也就是说: $$ (AB)\vec{v} = A(B\vec{v}) $$ **3blue1brown 的直觉解释:** 矩阵 B:提供了新的**变换后基向量** 记住:矩阵的每一列,表示标准基向量 $ \mathbf{e}_1, \mathbf{e}_2 $ 在变换后的样子。 所以: - $ B $ 是一个变换,它把空间“拉伸/旋转/压缩”成新的形状; - $ A $ 接着又对这个已经变形的空间进行变换。 例: $$ A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} $$ - $ B $ 的列是: - $ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $ → 第一个标准基向量变形后的位置 - $ \begin{bmatrix} -1 \\ 1 \end{bmatrix} $ → 第二个标准基向量变形后的位置 我们计算: - $ A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} $ - $ A \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} $ 所以: $$ AB = \begin{bmatrix} 2 & -2 \\ 3 & 3 \end{bmatrix} $$ 这个新矩阵 $ AB $ 的列向量,表示标准基向量在经历了 **“先 B 再 A”** 的变换后,落在了哪里。 ## 行列式 3blue1brown讲解行列式时,核心在于用几何直观来理解行列式的意义: 缩放比例!!! **体积(或面积)的伸缩因子** 对于二维空间中的2×2矩阵,行列式的绝对值表示该矩阵作为线性变换时,对**单位正方形**施加变换后得到的平行四边形的面积。类似地,对于三维空间中的3×3矩阵,行列式的绝对值就是单位立方体变换后的平行六面体的体积。也就是说,行列式告诉我们这个变换如何“拉伸”或“压缩”空间。 **方向的指示(有向面积或体积)** 行列式不仅仅给出伸缩倍数,还通过正负号反映了变换是否保持了原来的方向(正)还是发生了翻转(负)。例如,在二维中,如果行列式为负,说明变换过程中存在翻转(类似镜像效果)。 **变换的可逆性** 当行列式为零时,说明该线性变换把空间**压缩到了低维**(例如二维变一条线,三维变成一个平面或线),这意味着信息在变换过程中丢失,变换不可逆。 ![image-20250323104603200](https://pic.bitday.top/i/2025/03/23/j1llgr-0.png) ## 逆矩阵、列空间、零空间 ### **逆矩阵** 逆矩阵描述了一个矩阵所代表的线性变换的**“反过程”**。假设矩阵 $A$ 对空间做了某种变换(比如旋转、拉伸或压缩),那么 $A^{-1}$ 就是把这个变换“逆转”,把变换后的向量再映射回原来的位置。 前提是$A$ 是可逆的,即它对应的变换不会把空间压缩到更低的维度。 ### 秩 秩等于矩阵列向量(或行向量)**所生成的空间的维数**。例如,在二维中,如果一个 $2 \times 2$ 矩阵的秩是 2,说明这个变换把平面“充满”;如果秩为 1,则所有输出都落在一条直线上,说明变换“丢失”了一个维度。 ### 列空间 列空间是矩阵所有列向量的线性组合所构成的集合(也可以说所有可能的**输出向量**$A\mathbf{x}$所构成的集合)。 比如一个二维变换的列空间可能是整个平面,也可能只是一条直线,这取决于矩阵的秩。 ### 零空间 零空间(又称核、kernel)是所有在该矩阵作用(线性变换$A$)下变成零向量的**输入向量**的集合。 它展示了变换中哪些方向被“压缩”成了一个点(原点)。例如,在三维中,如果一个矩阵将所有向量沿某个方向压缩到零,那么这个方向构成了零空间。 零空间解释了$Ax=0$的解的集合,就是齐次的通解。如果满秩,零空间只有唯一解零向量。 ### 求解线性方程 设线性方程组写作 $$ A\mathbf{x} = \mathbf{b} $$ 这相当于在问:“有没有一个向量 $\mathbf{x}$ ,它经过矩阵 $A$ 的变换后,恰好落在 $\mathbf{b}$ 所在的位置?” - 如果 $\mathbf{b}$ 落在 $A$ 的列空间内,那么就存在解。解可能是唯一的(当矩阵满秩时)或无穷多(当零空间非平凡时)。 - 如果 $\mathbf{b}$ 不在列空间内,则说明 $\mathbf{b}$ 不可能由 $A$ 的列向量线性组合得到,这时方程组无解。 - 唯一解对应于所有这些几何对象在一点相交; - 无限多解对应于它们沿着某个方向重合; - 无解则说明这些对象根本没有公共交点。 ## 基变换 新基下的变换矩阵 $A_C$ 为: $$ A_C = P^{-1} A P $$ $P$:从原基到新基的**基变换矩阵**(可逆),$P$的每一列代表了新基中的一个基向量 $A$:线性变换 $T$ 在**原基**下的矩阵表示 原来空间中进行$A$线性变换等同于新基的视角下进行 $A_C$ 变换 ## 点积、哈达马积 **向量点积(Dot Product)** 3blue1brown认为,两个向量的点乘就是将其中一个向量转为线性变换。 假设有两个向量 $$ \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}. $$ $$ \mathbf{v} \cdot \mathbf{w} =\begin{bmatrix} v_1 & v_2 \end{bmatrix}\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}=v_1w_1 + v_2w_2.. $$ - **结果**: 点积的结果是一个**标量**(即一个数)。 - **几何意义**: 点积可以衡量两个向量的相似性,或者计算一个向量在另一个向量方向上的投影。 **哈达马积(Hadamard Product)** - **定义**: 对于两个向量 $\mathbf{u} = [u_1, u_2, \dots, u_n]$ 和 $\mathbf{v} = [v_1, v_2, \dots, v_n]$,它们的哈达马积定义为: $$ \mathbf{u} \circ \mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]. $$ - **结果**: 哈达马积的结果是一个**向量**,其每个分量是对应位置的分量相乘。 - **几何意义**: 哈达马积通常用于逐元素操作,比如在神经网络中对两个向量进行逐元素相乘。 矩阵也有哈达马积!。 ## 特征值和特征向量 设矩阵: $$ A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} $$ 步骤 1:求特征值 构造特征方程: $$ \det(A - \lambda I) = \det\begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} = (2-\lambda)(3-\lambda) - 0 = 0 $$ 解得: $$ (2-\lambda)(3-\lambda) = 0 \quad \Longrightarrow \quad \lambda_1 = 2,\quad \lambda_2 = 3 $$ 步骤 2:求特征向量 - 对于 $\lambda_1 = 2$: 解方程: $$ (A - 2I)\mathbf{x} = \begin{bmatrix} 2-2 & 1 \\ 0 & 3-2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 从第一行 $x_2 = 0$。因此特征向量可以写成: $$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\text{任意非零常数倍}) $$ - 对于 $\lambda_2 = 3$: 解方程: $$ (A - 3I)\mathbf{x} = \begin{bmatrix} 2-3 & 1 \\ 0 & 3-3 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1+x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 从第一行得 $-x_1 + x_2 = 0$ 或 $x_2 = x_1$。因此特征向量可以写成: $$ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (\text{任意非零常数倍}) $$ **设一个对角矩阵**: $$ D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} $$ $$ \lambda_1 = d_1,\quad \lambda_2 = d_2 $$ 对角矩阵的特征方程为: $$ \det(D - \lambda I) = (d_1 - \lambda)(d_2 - \lambda) = 0 $$ 因此特征值是: $$ \lambda_1 = d_1,\quad \lambda_2 = d_2 $$ - 对于 $\lambda_1 = d_1$,方程 $(D-d_1I)\mathbf{x}=\mathbf{0}$ 得到: $$ \begin{bmatrix} 0 & 0 \\ 0 & d_2-d_1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ (d_2-d_1)x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 若 $d_1 \neq d_2$,则必须有 $x_2=0$,而 $x_1$ 可任意取非零值,因此特征向量为: $$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} $$ - 对于 $\lambda_2 = d_2$,类似地解得: $$ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $$ ## 矩阵乘法 **全连接神经网络** ![image-20250316145729703](https://pic.bitday.top/i/2025/03/23/j1lnso-0.png) 其中: - $a^{(0)}$ 是输入向量,表示当前**层**的输入。 - $\mathbf{W}$ 是权重矩阵,表示输入向量到输出向量的线性变换。 - $b$ 是偏置向量,用于调整输出。 - $\sigma$ 是激活函数(如 ReLU、Sigmoid 等),用于引入非线性。 - **输入向量 $a^{(0)}$**: $$ a^{(0)} = \begin{pmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{pmatrix} $$ 这是一个 $n+1$ 维的列向量,表示输入特征。 - **权重矩阵 $\mathbf{W}$**: $$ \mathbf{W} = \begin{pmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \\ \end{pmatrix} $$ 这是一个 $k \times (n+1)$ 的矩阵,其中 $k$ 是输出向量的维度,$n+1$ 是输入向量的维度。 - **偏置向量 $b$**: $$ b = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{pmatrix} $$ 这是一个 $k$ 维的列向量,用于调整输出。 1. 在传统的连续时间 RNN 写法里,常见的是 $$ \sum_{j} W_{ij} \, \sigma(x_j), $$ 这代表对所有神经元 $j$ 的激活 $\sigma(x_j)$ 做加权求和,再求和到神经元 $i$。 如果拆开来看,每个输出分量也都含一个求和 $\sum_{j}$: - 输出向量的第 1 个分量(记作第 1 行的结果): $$ (W_r x)_1 = 0.3 \cdot x_1 + (-0.5) \cdot x_2 = 0.3 \cdot 2 + (-0.5) \cdot 1 = 0.6 - 0.5 = 0.1. $$ - 输出向量的第 2 个分量(第 2 行的结果): $$ (W_r x)_2 = 1.2 \cdot x_1 + 0.4 \cdot x_2 = 1.2 \cdot 2 + 0.4 \cdot 1 = 2.4 + 0.4 = 2.8. $$ 2. 在使用矩阵乘法时,你可以写成 $$ y = W_r \, \sigma(x), $$ 其中 $\sigma$ 表示对 $x$ 的各分量先做激活,接着用 $W_r$ 乘上去。这就是把“$\sum_j \dots$”用矩阵乘法隐藏了。 $$ \begin{pmatrix} 0.3 & -0.5\\ 1.2 & \;\,0.4 \end{pmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix} = \begin{pmatrix} 0.3 \times 2 + (-0.5) \times 1\\[6pt] 1.2 \times 2 + 0.4 \times 1 \end{pmatrix} = \begin{pmatrix} 0.6 - 0.5\\ 2.4 + 0.4 \end{pmatrix} = \begin{pmatrix} 0.1\\ 2.8 \end{pmatrix}. $$ ## 奇异值 **定义** 对于一个 $m \times n$ 的矩阵 $A$,其奇异值是非负实数 $\sigma_1, \sigma_2, \ldots, \sigma_r$($r = \min(m, n)$),满足存在正交矩阵 $U$ 和 $V$,使得: $$ A = U \Sigma V^T $$ 其中,$\Sigma$ 是对角矩阵,对角线上的元素即为奇异值。 --- **主要特点** 1. **非负性**:奇异值总是非负的。 2. 对角矩阵的奇异值是对角线元素的**绝对值**。 3. **降序排列**:通常按从大到小排列,即 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$。 4. **矩阵分解**:奇异值分解(SVD)将矩阵分解为三个矩阵的乘积,$U$ 和 $V$ 是正交矩阵,$\Sigma$ 是对角矩阵。 5. **应用广泛**:奇异值在数据降维、噪声过滤、图像压缩等领域有广泛应用。 --- ### 奇异值求解 奇异值可以通过计算矩阵 $A^T A$ 或 $A A^T$ 的特征值的**平方根**得到。 **步骤 1:计算 $A^T A$** 首先,我们计算矩阵 $A$ 的转置 $A^T$: $$ A^T = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} $$ 然后,计算 $A^T A$: $$ A^T A = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix} $$ **步骤 2:计算 $A^T A$ 的特征值** 接下来,我们计算 $A^T A$ 的特征值。特征值 $\lambda$ 满足以下特征方程: $$ \det(A^T A - \lambda I) = 0 $$ 即: $$ \det \begin{pmatrix} 9 - \lambda & 0 \\ 0 & 16 - \lambda \end{pmatrix} = (9 - \lambda)(16 - \lambda) = 0 $$ 解这个方程,我们得到两个特征值: $$ \lambda_1 = 16, \quad \lambda_2 = 9 $$ **步骤 3:计算奇异值** 奇异值是特征值的平方根,因此我们计算: $$ \sigma_1 = \sqrt{\lambda_1} = \sqrt{16} = 4 $$ $$ \sigma_2 = \sqrt{\lambda_2} = \sqrt{9} = 3 $$ **结果** 矩阵 $A$ 的奇异值为 **4** 和 **3**。 ### 奇异值分解 给定一个实矩阵 $A$(形状为 $m \times n$),SVD 是将它分解为: $$ A = U \Sigma V^T $$ 1. **构造 $A^T A$** - 计算对称矩阵 $A^T A$($n \times n$) 2. **求解 $A^T A$ 的特征值和特征向量** - 设特征值为 $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ - 对应特征向量为 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ 3. **计算奇异值** - $\sigma_i = \sqrt{\lambda_i}$ 4. **构造矩阵 $V$** - 将*正交归一*的特征向量作为列向量:$V = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n]$ 5. **求矩阵 $U$** - 对每个非零奇异值:$\mathbf{u}_i = \frac{A \mathbf{v}_i}{\sigma_i}$ - 标准化(保证向量长度为 1)后组成 $U = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_m]$ 6. **构造 $\Sigma$** - 对角线放置奇异值:$\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_p)$,$p=\min(m,n)$ ## 范数 ### **L2范数定义**: 对于一个向量 $\mathbf{w} = [w_1, w_2, \dots, w_n]$,L2 范数定义为 $$ \|\mathbf{w}\|_2 = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2} $$ 假设一个权重向量为 $\mathbf{w} = [3, -4]$,则 $$ \|\mathbf{w}\|_2 = \sqrt{3^2 + (-4)^2} = \sqrt{9+16} = \sqrt{25} = 5. $$ **用途**: - **正则化(L2正则化/权重衰减)**:在训练过程中,加入 L2 正则项有助于防止模型过拟合。正则化项通常是权重的 L2 范数的平方,例如 $$ \lambda \|\mathbf{w}\|_2^2 $$ 其中 $\lambda$ 是正则化系数。 - **梯度裁剪**:在 RNN 等深度网络中,通过计算梯度的 L2 范数来判断是否需要对梯度进行裁剪,从而防止梯度爆炸。 **具体例子**: 假设我们有一个简单的线性回归模型,损失函数为均方误差(MSE): $$ L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf{x}_i)^2 $$ 其中,$N$ 是样本数量,$y_i$ 是第 $i$ 个样本的真实值,$\mathbf{x}_i$ 是第 $i$ 个样本的特征向量,$\mathbf{w}$ 是权重向量。 加入 L2 正则项后,新的损失函数为: $$ L_{\text{reg}}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2 $$ 在训练过程中,优化算法会同时最小化原始损失函数和正则项,从而在拟合训练数据的同时,避免权重值过大。 **梯度更新** 在梯度下降算法中,权重 $\mathbf{w}$ 的更新公式为: $$ \mathbf{w} \leftarrow \mathbf{w} - \eta \nabla L_{\text{reg}}(\mathbf{w}) $$ 其中,$\eta$ 是学习率,$\nabla L_{\text{reg}}(\mathbf{w})$ 是损失函数关于 $\mathbf{w}$ 的梯度。 对于加入 L2 正则项的损失函数,梯度为: $$ \nabla L_{\text{reg}}(\mathbf{w}) = \nabla L(\mathbf{w}) + 2\lambda \mathbf{w} $$ 因此,权重更新公式变为: $$ \mathbf{w} \leftarrow \mathbf{w} - \eta (\nabla L(\mathbf{w}) + 2\lambda \mathbf{w}) $$ 通过加入 L2 正则项,模型在训练过程中不仅会最小化原始损失函数,还会尽量减小权重的大小,从而避免过拟合。正则化系数 $\lambda$ 控制着正则化项的强度,较大的 $\lambda$ 会导致权重更小,模型更简单,但可能会欠拟合;较小的 $\lambda$ 则可能无法有效防止过拟合。因此,选择合适的 $\lambda$ 是使用 L2 正则化的关键。 ### 矩阵的元素级范数 L0范数(但它 **并不是真正的范数**): $$ \|A\|_0 = \text{Number of non-zero elements in } A = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{I}(a_{ij} \neq 0) $$ 其中: - $\mathbb{I}(\cdot)$ 是指示函数(若 $a_{ij} \neq 0$ 则取 1,否则取 0)。 - 如果矩阵 $A$ 有 $k$ 个非零元素,则 $\|A\|_0 = k$。 1. **衡量稀疏性**: - $\|A\|_0$ **越小**,矩阵 $A$ 越稀疏(零元素越多)。 - 在压缩感知、低秩矩阵恢复、稀疏编码等问题中,常用 $L_0$ 范数来 **约束解的稀疏性**。 2. **非凸、非连续、NP难优化**: - $L_0$ 范数是 **离散的**,导致优化问题通常是 **NP难** 的(无法高效求解)。 - 因此,实际应用中常用 **$L_1$ 范数**(绝对值之和)作为凸松弛替代: $$ \|A\|_1 = \sum_{i,j} |a_{ij}| $$ NP难问题: 可以在多项式时间内 **验证一个解是否正确**,但 **不一定能在多项式时间内找到解**。 L1范数:元素绝对值和 $$ \|A\|_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| $$ | 范数类型 | 定义 | 性质 | 优化难度 | 用途 | | --------- | -------------------------------------- | ------------------ | ---------- | -------------- | | **$L_0$** | $\sum_{i,j} \mathbb{I}(a_{ij} \neq 0)$ | 非凸、离散、不连续 | NP难 | 精确稀疏性控制 | | **$L_1$** | $\sum_{i,j} |a_{ij}|$ | 凸、连续 | 可高效求解 | 稀疏性近似 | ### 矩阵的核范数 核范数,又称为**迹范数**(trace norm),是矩阵范数的一种,定义为矩阵所有奇异值之和。对于一个矩阵 $A$(假设其奇异值为 $\sigma_1, \sigma_2, \dots, \sigma_r$),其核范数定义为: $$ \|A\|_* = \sum_{i=1}^{r} \sigma_i, $$ 其中 $r$ 是矩阵 $A$ 的秩。 **核范数的主要特点** 1. 凸性 - 核范数是一个凸函数,因此在优化问题中**常用作替代矩阵秩**的惩罚项(因为直接最小化矩阵秩是一个NP困难的问题)。 2. 低秩逼近 - 在矩阵补全、低秩矩阵恢复等应用中,核范数被用来鼓励矩阵解具有**低秩**性质,因其是矩阵秩的凸松弛。 3. 与SVD的关系 - 核范数直接依赖于矩阵的奇异值,计算时通常需要**奇异值分解**(SVD)。 ### Frobenius 范数 对于一个矩阵 $A \in \mathbb{R}^{m \times n}$,其 Frobenius 范数定义为 $$ \|A\|_F = \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n} a_{ij}^2} $$ 这个定义与向量 $L2$ 范数类似,只不过是对矩阵中所有元素取平方和后再开平方。 如果矩阵 $A$ 的奇异值为 $\sigma_1, \sigma_2, \ldots, \sigma_n$,则: $$ \|A\|_F = \sqrt{\sum_{i=1}^n \sigma_i^2} $$ 这使得 Frobenius 范数在低秩近似和矩阵分解(如 SVD)中非常有用。 **迹和 Frobenius 范数的关系**: $$ \|A\|_F^2 = \text{tr}(A^* A) $$ 这表明 Frobenius 范数的平方就是 $A^* A$ 所有特征值之和。而 $A^* A$ 的特征值开方就是A的奇异值。 **权重为向量的情况** 当模型的输出是标量时(如单变量线性回归或二分类逻辑回归): - **输入特征**:$\mathbf{x}_i \in \mathbb{R}^d$(向量) - **权重形状**:$\mathbf{w} \in \mathbb{R}^d$(向量) - **预测公式**: $$ \hat{y}_i = \mathbf{w}^\top \mathbf{x}_i $$ 其中 $\hat{y}_i$ 是标量输出。 --- **权重为矩阵的情况** 当模型的输出是向量时(如多变量回归、神经网络全连接层): - **输入特征**:$\mathbf{x}_i \in \mathbb{R}^d$(向量) - **输出维度**:$\hat{\mathbf{y}}_i \in \mathbb{R}^m$(向量) - **权重形状**:$W \in \mathbb{R}^{m \times d}$(矩阵) - **预测公式**: $$ \hat{\mathbf{y}}_i = W \mathbf{x}_i + \mathbf{b} $$ 其中 $\mathbf{b} \in \mathbb{R}^m$ 是偏置向量。 ## 矩阵的迹 **迹的定义** 对于一个 $n \times n$ 的矩阵 $B$,其迹(trace)定义为矩阵对角线元素之和: $$ \text{tr}(B) = \sum_{i=1}^n B_{ii} $$ **迹与特征值的关系** 对于一个 $n \times n$ 的矩阵 $B$,其迹等于其特征值之和。即: $$ \text{tr}(B) = \sum_{i=1}^n \lambda_i $$ 其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是矩阵 $B$ 的特征值。 **应用到 $A^* A$** 对于矩阵 $A^* A$(如果 $A$ 是实矩阵,则 $A^* = A^T$),它是一个半正定矩阵,其特征值是非负实数。 $A^* A$ 的迹还与矩阵 $A$ 的 Frobenius 范数有直接关系。具体来说: $$ \|A\|_F^2 = \text{tr}(A^* A) $$ **迹的基本性质** 迹是一个线性运算,即对于任意标量 $c_1, c_2$ 和矩阵 $A, B$,有: $$ \text{tr}(c_1 A + c_2 B) = c_1 \text{tr}(A) + c_2 \text{tr}(B) $$ 对于任意矩阵 $A, B, C$,迹满足循环置换性质: $$ \text{tr}(ABC) = \text{tr}(CAB) = \text{tr}(BCA) $$ 注意:迹的循环置换性**不**意味着 $\text{tr}(ABC) = \text{tr}(BAC)$,除非矩阵 $A, B, C$ 满足某些特殊条件(如对称性)。 ## 酉矩阵 酉矩阵是一种复矩阵,其满足下面的条件:对于一个 $n \times n$ 的复矩阵 $U$,如果有 $$ U^* U = U U^* = I, $$ 其中 $U^*$ 表示 $U$ 的共轭转置(先转置再取复共轭),而 $I$ 是 $n \times n$ 的单位矩阵,那么 $U$ 就被称为酉矩阵。简单来说,酉矩阵在复内积空间中保持内积不变,相当于在该空间中的“旋转”或“反射”。 如果矩阵的元素都是实数,那么 $U^*$ 就等于 $U^T$(转置),这时酉矩阵就退化为**正交矩阵**。 考虑二维旋转矩阵 $$ U = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}. $$ 当 $\theta$ 为任意实数时,这个矩阵满足 $$ U^T U = I, $$ 所以它是一个正交矩阵,同时也属于酉矩阵的范畴。 例如,当 $\theta = \frac{\pi}{4}$(45°)时, $$ U = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}. $$ ## 正定\正半定矩阵 1. **正定矩阵(PD)** $$ A \text{ 正定} \iff \forall\, x \in \mathbb{R}^n \setminus \{0\}, \quad x^T A x > 0. $$ 2. **正半定矩阵(PSD)** $$ A \text{ 正半定} \iff \forall\, x \in \mathbb{R}^n, \quad x^T A x \ge 0. $$ - **PD**:所有特征值都严格大于零。 $\lambda_i(A)>0,\;i=1,\dots,n$。 - **PSD**:所有特征值都非负。 $\lambda_i(A)\ge0,\;i=1,\dots,n$。 **拉普拉斯矩阵是正半定矩阵!** 对于任意实矩阵 $A$(大小为 $m\times n$),矩阵 $B = A^T A\quad(\text{大小为 }n\times n).$是半正定矩阵 - 显然 $$ B^T = (A^T A)^T = A^T (A^T)^T = A^T A = B, $$ 所以 $B$ 是对称矩阵。 - 对任意向量 $x\in\mathbb R^n$,有 $$ x^T B\,x = x^T (A^T A) x = (Ax)^T (Ax) = \|Ax\|^2 \;\ge\;0. $$ 因此 $B$ 总是 **正半定(PSD)** 的。 ## 对称非负矩阵分解 $$ A≈HH^T $$ **1. 问题回顾** 给定一个**对称非负**矩阵 $A\in\mathbb{R}^{n\times n}$,我们希望找到一个**非负矩阵** $H\in\mathbb{R}^{n\times k}$ 使得 $$ A \approx HH^T. $$ 为此,我们可以**最小化目标函数(损失函数)** $$ f(H)=\frac{1}{2}\|A-HH^T\|_F^2, $$ 其中 $\|\cdot\|_F$ 表示 Frobenius 范数,定义为矩阵所有元素的平方和的平方根。 $\| A - H H^T \|_F^2$ 表示矩阵 $A - H H^T$ 的所有元素的平方和。 **2. 梯度下降方法** 2.1 计算梯度 目标函数(损失函数)是 $$ f(H)=\frac{1}{2}\|A-HH^T\|_F^2. $$ $$ \|M\|_F^2 = \operatorname{trace}(M^T M), $$ 因此,目标函数可以写成: $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^T\bigl(A-HH^T\bigr)\Bigr]. $$ 注意到 $A$ 和$HH^T$ 都是对称矩阵,可以简化为: $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^2\Bigr]. $$ 展开后得到 $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[A^2 - 2AHH^T + (HH^T)^2\Bigr]. $$ 其中 $\operatorname{trace}(A^2)$ 与 $H$ 无关,可以看作常数,不影响梯度计算。 **计算** $\nabla_H \operatorname{trace}(-2 A H H^T)$ $$ \nabla_H \operatorname{trace}(-2 A H H^T) = -4 A H $$ **计算** $\nabla_H \operatorname{trace}((H H^T)^2)$ $$ \nabla_H \operatorname{trace}((H H^T)^2) = 4 H H^T H $$ 将两部分梯度合并: $$ \nabla_H f(H) = \frac{1}{2}(4 H H^T H - 4 A H )= 2(H H^T H - A H) $$ 2.2 梯度下降更新 设学习率为 $\eta>0$,则梯度下降的**基本更新公式为**: $$ H \leftarrow H - \eta\, \nabla_H f(H) = H - 2\eta\Bigl(HH^T H - A H\Bigr). $$ 由于我们要求 $H$ 中的元素保持非负,所以每次更新之后通常需要进行**投影**: $$ H_{ij} \leftarrow \max\{0,\,H_{ij}\}. $$ 这种方法称为**投影梯度下降**,保证每一步更新后 $H$ 满足非负约束。 **3. 举例说明** 设对称非负矩阵: $$ A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad k=1, \quad H \in \mathbb{R}^{2 \times 1} $$ 初始化 $H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,学习率 $\eta = 0.01$。 **迭代步骤**: 1. **初始 \( H^{(0)} \):** $$ H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad H^{(0)}(H^{(0)})^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. $$ 目标函数值: $$ f(H^{(0)}) = \frac{1}{2} \left( (2-1)^2 + 2(1-1)^2 + (2-1)^2 \right) = 1. $$ 2. **计算梯度:** $$ HH^T H = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad AH = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, $$ $$ \nabla_H f(H^{(0)}) = 2 \left( \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}. $$ 3. **更新 \( H \):** $$ H^{(1)} = H^{(0)} - 2 \cdot 0.01 \cdot \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1.04 \\ 1.04 \end{bmatrix}. $$ 4. **更新后目标函数:** $$ H^{(1)}(H^{(1)})^T = \begin{bmatrix} 1.0816 & 1.0816 \\ 1.0816 & 1.0816 \end{bmatrix}, $$ $$ f(H^{(1)}) = \frac{1}{2} \left( (2-1.0816)^2 + 2(1-1.0816)^2 + (2-1.0816)^2 \right) \approx 0.8464. $$ 一次迭代后目标函数值从 $1.0$ 下降至 $0.8464$