md_files/科研/ZY网络重构分析.md

315 lines
9.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

如何确定kmeans的簇数节点之间的流量空间转为时间的图。
压缩感知 函数拟合 采样定理 傅里叶变换
## **谱分解**与网络重构
实对称矩阵性质:
对于任意 $n \times n$ 的实对称矩阵 $A$
1. **秩可以小于 $n$**(即存在零特征值,矩阵不可逆)。
2. 但仍然有 $n$ 个线性无关的特征向量(即可对角化)。
一个实对称矩阵可以通过其特征值和特征向量进行分解。对于一个 $n \times n$ 的**对称矩阵** $A$
**完整谱分解**可以表示为:
$$
A = Q \Lambda Q^T \\
A = \sum_{i=1}^{n} \lambda_i x_i x_i^T
$$
$Q$是$n \times n$的正交矩阵,每一列是一个特征向量;$\Lambda$是$n \times n$的对角矩阵,对角线元素是特征值$\lambda_i$ 其余为0。
其中,$\lambda_i$ 是矩阵 $A$ 的第 $i$ 个特征值,$x_i$ 是对应的特征向量。
**事实上,如果矩阵 $A$ 的秩为 $r$ ,就只需要用前 $r$ 个特征值和特征向量就可以精确重构出。因为零特征值对矩阵重构不提供任何贡献。**
**截断的谱分解**(取前 r 个特征值和特征向量)
如果我们只保留前 $r$ 个最大的(或最重要的)特征值和对应的特征向量,那么:
- **特征向量矩阵 $U_r$**:取 $U$ 的前 $r$ 列,维度为 $n \times r$。
- **特征值矩阵 $\Lambda_r$**:取 $\Lambda$ 的前 $r \times r$ 子矩阵(即前 $r$ 个对角线元素),维度为 $r \times r$。
因此,截断后的近似分解为:
$$
A \approx U_r \Lambda_r U_r^T\\
A \approx \sum_{i=1}^{r} \lambda_i x_i x_i^T
$$
**推导过程**
1. **特征值和特征向量的定义**
对于一个对称矩阵 $A$,其特征值和特征向量满足:
$$
A x_i = \lambda_i x_i
$$
其中,$\lambda_i$ 是特征值,$x_i$ 是对应的特征向量。
2. **谱分解**
将这些特征向量组成一个正交矩阵 $Q$
$A = Q \Lambda Q^T$
$$
Q = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix},
$$
$$
Q \Lambda = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix}.
$$
$$
Q \Lambda Q^T = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix} \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}.
$$
$$
Q \Lambda Q^T = \lambda_1 x_1 x_1^T + \lambda_2 x_2 x_2^T + \cdots + \lambda_n x_n x_n^T.
$$
可以写为
$$
A = \sum_{i=1}^{n} \lambda_i x_i x_i^T.
$$
3. **网络重构**
在随机网络中,网络的邻接矩阵 $A$ 通常是对称的。利用预测算法得到的谱参数 $\{\lambda_i, x_i\}$ 后,就可以用以下公式重构网络矩阵:
$$
A(G) = \sum_{i=1}^{n} \lambda_i x_i x_i^T
$$
## 网络重构分析
### 基于扰动理论的特征向量估算方法
设原矩阵为 $A$,扰动后矩阵为 $A+\zeta C$(扰动矩阵 $\zeta C$$\zeta$是小参数),令其第 $i$ 个特征值、特征向量分别为 $\lambda_i,x_i$ 和 $\tilde\lambda_i,\tilde x_i$。
**特征向量的一阶扰动公式:**
$$
\Delta x_i
=\tilde x_i - x_i
\;\approx\;
\zeta \sum_{k\neq i}
\frac{x_k^T\,C\,x_i}{\lambda_i - \lambda_k}\;x_k,
$$
- **输出**:对应第 $i$ 个特征向量修正量 $\Delta x_i$。
**特征值的一阶扰动公式:**
$$
\Delta\lambda_i = \tilde\lambda_i - \lambda_i \;\approx\;\zeta\,x_i^T\,C\,x_i
$$
**关键假设:**当扰动较小( $\zeta\ll1$ 且各模态近似正交均匀时,常作进一步近似
$$
x_k^T\,C\,x_i \;\approx\; x_i^T\,C\,x_i \;
$$
正交: $\{x_k\}$ 本身是正交基,这是任何对称矩阵特征向量天然具有的属性。
均匀:我们把 $C$ 看作“**不偏向任何特定模态**”的随机小扰动——换句话说,投影到任何两个方向 $(x_i,x_k)$ 上的耦合强度 $x_k^T\,C\,x_i\quad\text{和}\quad x_i^T\,C\,x_i$ 在数值量级上应当差不多,因此可以互相近似。
因此,将所有的 $x_k^T C x_i$ 替换为 $x_i^T C x_i$
$$
\Delta x_i \approx \zeta \sum_{k\neq i} \frac{x_i^T C x_i}{\lambda_i - \lambda_k} x_k = \zeta (x_i^T C x_i) \sum_{k\neq i} \frac{1}{\lambda_i - \lambda_k} x_k = \sum_{k\neq i} \frac{\Delta \lambda_i}{\lambda_i - \lambda_k} x_k \tag{*}
$$
$$
\Delta x_i \approx\sum_{k\neq i} \frac{\Delta \lambda_i}{\lambda_i - \lambda_k} x_k \tag{*}
$$
问题:
1. **当前时刻的邻接矩阵**
$$
A^{(1)}\in\mathbb R^{n\times n},\qquad
A^{(1)}\,x_i^{(1)}=\lambda_i^{(1)}\,x_i^{(1)},\quad \|x_i^{(1)}\|=1.
$$
2. **下一时刻的邻接矩阵**
$$
A^{(2)}\in\mathbb R^{n\times n},
$$
**已知**它的第 $i$ 个特征值 $\lambda_i^{(2)}$(卡尔曼滤波得来). **求**当前时刻的特征向量 $x_i^{(2)}$。
**下一时刻**第 $i$ 个特征向量的预测为
$$
\boxed{
x_i^{(2)}
\;=\;
x_i^{(1)}+\Delta x_i
\;\approx\;
x_i^{(1)}
+\sum_{k\neq i}
\frac{\lambda_i^{(2)}-\lambda_i^{(1)}}
{\lambda_i^{(1)}-\lambda_k^{(1)}}\;
x_k^{(1)}.
}
$$
通过该估算方法可以依次求出下一时刻的所有特征向量。
### 矩阵符号说明
- 原始(真实)邻接矩阵:
$$
A = \sum_{m=1}^n \lambda_m\,x_m x_m^T,
\quad \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n\;
$$
- 滤波估计得到的矩阵及谱分解:
$$
\widetilde A = \sum_{m=1}^r \widetilde\lambda_m\,\widetilde x_m\widetilde x_m^T,
\quad \widetilde\lambda_1\ge\cdots\ge\widetilde\lambda_n\;
$$
- 只取前 $r$ 项重构
$$
A_r \;=\;\sum_{m=1}^r \widetilde\lambda_m\,\widetilde x_m\widetilde x_m^T,
$$
- 对 $A_r$ 进行K-means聚类得到 $A_{final}$
目标是让 $A_{final}$ = $A$
### **0/1矩阵**
其中 $\widetilde{\lambda}_i$ 和 $\widetilde{x}_i$ 分别为通过预测得到矩阵 $\widetilde A$ 的第 $i$ 个特征值和对应特征向量。 然而预测值和真实值之间存在误差,直接进行矩阵重构会使得重构误差较大。 对于这个问题,文献提出一种 0/1 矩阵近似恢复算法。
$$
a_{ij} =
\begin{cases}
1, & \text{if}\ \lvert a_{ij} - 1 \rvert < 0.5 \\
0, & \text{else}
\end{cases}
$$
只要我们的估计值与真实值之间差距**小于 0.5**就能保证阈值处理以后准确地恢复原边信息
文中提出网络特征值扰动与邻接矩阵扰动具有相同的规律
真实矩阵 $A$ 与预测矩阵 $\widetilde{A} $ 之间的差为
$$
A - \widetilde{A}=\sum_{m=1}^n \lambda_m\,x_m x_m^T-\sum_{m=1}^n \widetilde\lambda_m\,\widetilde x_m\widetilde x_m^T
$$
若假设特征向量扰动可忽略$\widetilde x_m\approx x_m$ 扰动可简化为这里可能有问题特征向量的扰动也要计算
$$
A - \widetilde{A} = \sum_{m=1}^n \Delta \lambda_m \widetilde{x}_m \widetilde{x}_m^T.
$$
对于任意元素 $(i, j)$ 上有
$$
|a_{ij} - \widetilde{a}_{ij}|=\left| \sum_{m=1}^n \Delta \lambda_m (\widetilde{x}_m \widetilde{x}_m^T)_{ij} \right| < \frac{1}{2}
$$
于一个归一化的特征向量 $\widetilde{x}_m$其外积矩阵 $\widetilde{x}_m \widetilde{x}_m^T$ 的元素理论上满足
$$
|(\widetilde{x}_m \widetilde{x}_m^T)_{ij}| \leq 1.
$$
经过分析推导可以得出发生特征扰动时网络精准重构条件为
$$
\sum_{m=1}^n \Delta \lambda_m < \frac{1}{2}
$$
$$
\Delta {\lambda} < \frac{1}{2n}
$$
0-1 矩阵能够精准重构的容忍上界与网络中的节点数量成反比网络中节点数量越多实现精准重构的要求也就越高
如果在**高层次**特征值滤波的误差累积超过了一定阈值就有可能在**低层次**邻接矩阵元素中出现翻转公式推导了只要谱参数的误差之和**不超过** 0.5就可以保证0-1矩阵的精确重构
### **非0/1矩阵**
#### **全局误差度量**
对估计矩阵 $\widetilde{A}$ 的所有元素 $\{\tilde{a}_{ij}\}$ 进行 $K$-means 聚类得到中心 $\{c_k\}_{k=1}^K$。
- **簇内平均偏差**
$$
\text{mean}_k = \frac{1}{|\mathcal{S}_k|} \sum_{(i,j)\in\mathcal{S}_k} |\tilde{a}_{ij} - c_k|
$$
- **全局允许误差**
$$
\delta_{\max} = \frac{1}{K} \sum_{k=1}^K \text{mean}_k
$$
#### 带权重构需控制两类误差:
1. **截断谱分解误差**$\epsilon$
$$
\epsilon
= \bigl\|\widetilde A - A_r\bigr\|_F
= \Bigl\|\sum_{m=r+1}^n \widetilde\lambda_m\,\widetilde x_m \widetilde x_m^T\Bigr\|_F.
$$
---
2. **滤波误差**$\eta$
**来源**滤波器在谱域对真实特征值/向量的估计偏差包括
- 特征值偏差 $\Delta\lambda_m=\lambda_m-\widetilde\lambda_m$
- 特征向量矩阵扰动得来
$$
A - \widetilde A=\sum_{m=1}^n \Delta \lambda_m \hat{x}_m \hat{x}_m^T.
$$
$$
\eta \approx \Bigl\|\sum_{m=1}^n \Delta\lambda_m\,\widetilde x_m\widetilde x_m^T\Bigr\|_F
$$
#### **最终约束条件**
$$
\boxed{
\underbrace{\eta}_{\text{滤波误差}}
\;+\;
\underbrace{\epsilon}_{\text{谱分解截断误差}}
\;\le\;
\underbrace{\delta_{\max}}_{\text{聚类量化容限}}
}
$$
量化的间隔是不是就和分布有关有无其他影响因素
通信原理采样量化
压缩感知的话量化分隔不是均匀的
假设都是破松分布