md_files/科研/草稿.md

47 lines
1.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

分布式计算和集中式计算是完全等价的。将分布式算法中的本地观测
$$
b_i(k) = \sum_j a_{ij} x_j(k)
$$
代入瑞利商公式
$$
y(k) = \frac{\sum_i x_i(k) b_i(k)}{\sum_i x_i(k)^2}
$$
即可得到集中式计算的Rayleigh商形式
$$
\frac{x(k)^T (A x(k))}{x(k)^T x(k)},
$$
这与特征值估计的幂迭代公式
$$
\lambda_{\max} \approx \frac{x^T A x}{x^T x}
$$
完全一致。
---
### 代数示例
考虑一个简单的2×2矩阵
$$
A = \begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}, \quad x = \begin{pmatrix}2\\1\end{pmatrix}.
$$
1. **集中式计算**
$$
\lambda \approx \frac{x^T A x}{x^T x}
= \frac{\begin{pmatrix}2 & 1\end{pmatrix} \begin{pmatrix}5\\4\end{pmatrix}}{2^2 + 1^2}
= \frac{10 + 4}{5}
= \frac{14}{5} = 2.8.
$$
2. **分布式计算**
各节点分别计算本地观测值
$$
b_1 = (2 \cdot 2 + 1 \cdot 1) = 5, \quad b_2 = (1 \cdot 2 + 2 \cdot 1) = 4,
$$
然后通过全网共识计算
$$
y = \frac{2 \cdot 5 + 1 \cdot 4}{2^2 + 1^2}
= \frac{14}{5} = 2.8.
$$
两种方法得到的结果完全相同。