reptile/main_extraction.py
2024-08-03 09:31:32 +08:00

226 lines
10 KiB
Python

import pandas as pd
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import time
import random
import os
import glob
def clean_text(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
paragraphs = soup.find_all('p')
lines = []
for p in paragraphs:
line = ''.join([span.get_text(strip=True) for span in p.find_all('span', recursive=False)])
lines.append(line)
return '\n'.join(lines).strip()
def process_table(table_rows):
results = {
"行政处罚决定书文号": "",
"被处罚当事人": "",
"主要违法违规事实": "",
"行政处罚依据": "",
"行政处罚决定": "",
"作出处罚决定的机关名称": "",
"作出处罚决定的日期": ""
}
try:
if len(table_rows) == 9:
results["行政处罚决定书文号"] = clean_text(str(table_rows[0].find_all('td')[1]))
person_name = clean_text(str(table_rows[1].find_all('td')[2]))
org_name = clean_text(str(table_rows[2].find_all('td')[2]))
legal_rep_name = clean_text(str(table_rows[3].find_all('td')[1]))
results["被处罚当事人"] = f'"个人姓名": "{person_name}"\n"单位名称": "{org_name}"\n"单位法定代表人(主要负责人)姓名": "{legal_rep_name}"'
results["主要违法违规事实"] = clean_text(str(table_rows[4].find_all('td')[1]))
results["行政处罚依据"] = clean_text(str(table_rows[5].find_all('td')[1]))
results["行政处罚决定"] = clean_text(str(table_rows[6].find_all('td')[1]))
results["作出处罚决定的机关名称"] = clean_text(str(table_rows[7].find_all('td')[1]))
results["作出处罚决定的日期"] = clean_text(str(table_rows[8].find_all('td')[1]))
elif len(table_rows) == 10:
results["行政处罚决定书文号"] = clean_text(str(table_rows[0].find_all('td')[1]))
person_name = clean_text(str(table_rows[1].find_all('td')[3]))
person_org = clean_text(str(table_rows[2].find_all('td')[1]))
org_name = clean_text(str(table_rows[3].find_all('td')[2]))
legal_rep_name = clean_text(str(table_rows[4].find_all('td')[1]))
results["被处罚当事人"] = f'"个人姓名": "{person_name}"\n"个人单位": "{person_org}"\n"单位名称": "{org_name}"\n"单位法定代表人(主要负责人)姓名": "{legal_rep_name}"'
results["主要违法违规事实"] = clean_text(str(table_rows[5].find_all('td')[1]))
results["行政处罚依据"] = clean_text(str(table_rows[6].find_all('td')[1]))
results["行政处罚决定"] = clean_text(str(table_rows[7].find_all('td')[1]))
results["作出处罚决定的机关名称"] = clean_text(str(table_rows[8].find_all('td')[1]))
results["作出处罚决定的日期"] = clean_text(str(table_rows[9].find_all('td')[1]))
elif len(table_rows) == 8:
results["行政处罚决定书文号"] = clean_text(str(table_rows[0].find_all('td')[1]))
org_name=clean_text(str(table_rows[1].find_all('td')[2]))
name=clean_text(str(table_rows[2].find_all('td')[1]))
results["被处罚当事人"] = f'"单位名称": "{org_name}"\n"主要负责人姓名": "{name}"'
results["主要违法违规事实"] = clean_text(str(table_rows[3].find_all('td')[1]))
results["行政处罚依据"] = clean_text(str(table_rows[4].find_all('td')[1]))
results["行政处罚决定"] = clean_text(str(table_rows[5].find_all('td')[1]))
results["作出处罚决定的机关名称"] = clean_text(str(table_rows[6].find_all('td')[1]))
results["作出处罚决定的日期"] = clean_text(str(table_rows[7].find_all('td')[1]))
else:
results["行政处罚决定书文号"]=clean_text(str(table_rows[0].find_all_next('td')[1]))
results["被处罚当事人"] = clean_text(str(table_rows[1].find_all_next('td')[1]))
results["主要违法违规事实"] = clean_text(str(table_rows[2].find_all_next('td')[1]))
results["行政处罚依据"] = clean_text(str(table_rows[3].find_all_next('td')[1]))
results["行政处罚决定"] = clean_text(str(table_rows[4].find_all_next('td')[1]))
results["作出处罚决定的机关名称"] = clean_text(str(table_rows[5].find_all_next('td')[1]))
results["作出处罚决定的日期"] = clean_text(str(table_rows[6].find_all_next('td')[1]))
except Exception as e:
print(f"Error processing table: {e}")
return results
def create_browser():
options = webdriver.ChromeOptions()
options.add_argument('--headless') # 使用无头模式
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_argument(
'user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36')
options.add_experimental_option('excludeSwitches', ['enable-automation'])
options.add_experimental_option('useAutomationExtension', False)
driver = webdriver.Remote(
command_executor='http://chrome:4444/wd/hub',
options=options
)
return driver
def fetch_data(urls):
# options = webdriver.ChromeOptions()
# options.add_argument('--headless') # 使用无头模式
# options.add_argument('--disable-blink-features=AutomationControlled')
# options.add_argument(
# 'user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36')
# options.add_experimental_option('excludeSwitches', ['enable-automation'])
# options.add_experimental_option('useAutomationExtension', False)
# driver = webdriver.Chrome(options=options)
# driver.execute_cdp_cmd('Page.addScriptToEvaluateOnNewDocument', {
# 'source': '''
# Object.defineProperty(navigator, 'webdriver', {
# get: () => undefined
# });
# window.navigator.chrome = {
# runtime: {}
# };
# Object.defineProperty(navigator, 'languages', {
# get: () => ['en-US', 'en']
# });
# Object.defineProperty(navigator, 'plugins', {
# get: () => [1, 2, 3, 4, 5]
# });
# '''
# })
driver = create_browser()
all_data = pd.DataFrame()
error_urls = []
for url in urls:
try:
driver.get(url)
print("Processing URL:", url)
random_wait(1, 3) # 随机等待时间
html = driver.page_source
soup = BeautifulSoup(html, 'html.parser')
selectors = [
'.Section0 .MsoNormalTable, .Section0 .MsoTableGrid',
'.Section1 .MsoNormalTable, .Section1 .MsoTableGrid',
'.WordSection1 .MsoNormalTable, .WordSection1 .MsoTableGrid',
'.Section0 table',
'.Section1 table',
'.WordSection1 table'
]
table = None
for selector in selectors:
table = soup.select_one(selector)
if table:
break
if table:
table_rows = table.find_all('tr')
results = process_table(table_rows)
df = pd.DataFrame([results])
all_data = pd.concat([all_data, df], ignore_index=True)
else:
print(f"No table found for URL: {url}")
error_urls.append(url)
except Exception as e:
print(f"Error processing URL {url}: {e}")
error_urls.append(url)
driver.quit()
if error_urls:
with open('error_urls.txt', 'w') as file:
for error_url in error_urls:
file.write(f"{error_url}\n")
print(f"Error URLs have been saved to error_urls.txt")
return all_data
def random_wait(min_time=1, max_time=3):
time.sleep(random.uniform(min_time, max_time))
def create_empty_excel(filename):
columns = ["行政处罚决定书文号", "被处罚当事人", "主要违法违规事实", "行政处罚依据", "行政处罚决定", "作出处罚决定的机关名称", "作出处罚决定的日期"]
df = pd.DataFrame(columns=columns)
df.to_excel(filename, index=False)
def process_in_batches(url_files_pattern, output_file_prefix, batch_size=100, max_rows_per_file=10000):
url_files = glob.glob(url_files_pattern)
urls = []
for url_file in url_files:
with open(url_file, 'r') as file:
urls.extend([line.strip() for line in file if line.strip()])
total_urls = len(urls)
num_batches = (total_urls // batch_size) + (1 if total_urls % batch_size != 0 else 0)
file_index = 1
output_filename = f'{output_file_prefix}{file_index}.xlsx'
rows_in_file = 0
if not os.path.exists(output_filename):
create_empty_excel(output_filename)
for batch_num in range(num_batches):
start_index = batch_num * batch_size
end_index = start_index + batch_size
batch_urls = urls[start_index:end_index]
print(f"Processing batch {batch_num + 1} of {num_batches}")
batch_data = fetch_data(batch_urls)
try:
existing_data = pd.read_excel(output_filename, sheet_name='Sheet1')
combined_data = pd.concat([existing_data, batch_data], ignore_index=True)
except FileNotFoundError:
combined_data = batch_data
with pd.ExcelWriter(output_filename, engine='openpyxl', mode='a', if_sheet_exists='overlay') as writer:
combined_data.to_excel(writer, index=False, sheet_name='Sheet1')
rows_in_file += batch_data.shape[0]
if rows_in_file >= max_rows_per_file:
file_index += 1
output_filename = f'{output_file_prefix}{file_index}.xlsx'
rows_in_file = 0
if not os.path.exists(output_filename):
create_empty_excel(output_filename)
# Example usage
url_files_pattern = 'url*.txt' # 匹配所有以 'url' 开头的 txt 文件
output_file_prefix = 'output_data'
process_in_batches(url_files_pattern, output_file_prefix, batch_size=100)
print("Data has been appended to the existing Excel files.")