This commit is contained in:
zy123 2024-09-27 18:07:34 +08:00
parent 1bc628fcf2
commit 2c036d8504
4 changed files with 216 additions and 61 deletions

View File

@ -1,11 +1,11 @@
import json
import re
def extract_content_from_json(json_data):
"""提取 { 和 } 之间的内容,并将其解析为字典"""
if not json_data.strip():
def extract_content_from_json(string):
"""输入字符串,提取 { 和 } 之间的内容,并将其解析为字典"""
if not string.strip():
return {}
match = re.search(r'\{[\s\S]*\}', json_data)
match = re.search(r'\{[\s\S]*\}', string)
if match:
try:
json_data = match.group(0)

View File

@ -1,7 +1,210 @@
dict1 = {"a": {}}
dict2 = {"b": {}}
import json
import docx
import re
import os
from PyPDF2 import PdfReader
from flask_app.main.截取pdf import clean_page_content,extract_common_header
# 使用 update() 方法
dict1.update(dict2)
def extract_text_from_docx(file_path):
doc = docx.Document(file_path)
return '\n'.join([para.text for para in doc.paragraphs])
print(dict1)
def extract_text_from_pdf(file_path):
# 从PDF文件中提取文本
common_header = extract_common_header(file_path)
pdf_document = PdfReader(file_path)
text = ""
# 遍历每一页
for page in pdf_document.pages:
# 提取当前页面的文本
page_text = page.extract_text() if page.extract_text() else ""
# 清洗页面文本
page_text = clean_page_content(page_text, common_header)
# 将清洗后的文本添加到总文本中
text += page_text+"\n"
return text
def extract_section(text, start_pattern, end_phrases):
# 查找开始模式
start_match = re.search(start_pattern, text)
if not start_match:
return "" # 如果没有找到匹配的开始模式,返回空字符串
start_index = start_match.end() # 从匹配的结束位置开始
# 初始化结束索引为文本总长度
end_index = len(text)
# 遍历所有结束短语,查找第一个出现的结束短语
for phrase in end_phrases:
match = re.search(phrase, text[start_index:], flags=re.MULTILINE)
if match:
end_index = start_index + match.start() # 更新结束索引为匹配到的开始位置
break # 找到第一个匹配后立即停止搜索
# 提取并返回从开始模式后到结束模式前的内容
return text[start_index:end_index]
def compare_headings(current, new):
# 使用过滤来确保只处理非空且为数字的部分
current_nums = [int(num) for num in current.split('.') if num.isdigit()]
new_nums = [int(num) for num in new.split('.') if num.isdigit()]
# 比较数字序列以确定标题的层次关系
for c, n in zip(current_nums, new_nums):
if n > c:
return True
elif n < c:
return False
# 如果新标题有更多层次,认为是新的子章节
return len(new_nums) > len(current_nums)
def should_add_newline(content, keywords, max_length=20):
content_str = ''.join(content).strip()
return any(keyword in content_str for keyword in keywords) or len(content_str) <= max_length
def handle_content_append(current_content, line_content, append_newline, keywords):
if append_newline:
if should_add_newline(current_content, keywords):
current_content.append('\n') # 添加换行符
append_newline = False
current_content.append(line_content)
return append_newline
#对二级标题如x.x进行额外处理如果当前处理内容包含keywords中的内容则必须保留换行符/如果当前内容字数大于20不保留换行。
def parse_text_by_heading(text):
keywords = ['包含', '以下']
data = {}
current_key = None
current_content = []
append_newline = False
lines = text.split('\n')
for i, line in enumerate(lines):
line_stripped = line.strip()
# 匹配形如 '1.1'、'2.2.3' 等至少包含一个点的标题,并确保其前后没有字母或括号
match = re.match(r'^(?<![a-zA-Z(])(\d+(?:\.\d+)+)\s*(.*)', line_stripped)
if not match:
match = re.match(r'^(\d+\.)\s*(.+)$', line_stripped)
if match:
new_key, line_content = match.groups()
line_content = line_content.lstrip('.')
# 检查是否应该更新当前键和内容
if current_key is None or (compare_headings(current_key, new_key) and (
len(current_content) == 0 or current_content[-1][-1] != '')):
if current_key is not None:
# 将之前的内容保存到data中保留第一个换行符后续的换行符转为空字符
content_string = ''.join(current_content).strip()
data[current_key] = content_string.replace(' ', '')
current_key = new_key
current_content = [line_content]
# 只有当标题级别为两级(如 1.1)时,才设置 append_newline 为 True
append_newline = len(new_key.split('.')) == 2
else:
append_newline = handle_content_append(current_content, line_content, append_newline, keywords)
else:
if line_stripped:
append_newline = handle_content_append(current_content, line_stripped, append_newline, keywords)
if current_key is not None:
# 保存最后一部分内容
content_string = ''.join(current_content).strip()
data[current_key] = content_string.replace(' ', '')
return data
def convert_to_json(file_path, start_word, end_phrases):
if file_path.endswith('.docx'):
text = extract_text_from_docx(file_path)
elif file_path.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
else:
raise ValueError("Unsupported file format")
# 提取从 start_word 开始到 end_phrases 结束的内容
text = extract_section(text, start_word, end_phrases)
# print(text)
parsed_data = parse_text_by_heading(text)
return parsed_data
def convert_clause_to_json(input_path,output_folder,type=1):
if not os.path.exists(input_path):
print(f"The specified file does not exist: {input_path}")
return ""
if type==1:
start_word = "投标人须知正文"
end_phrases = [
r'^第[一二三四五六七八九十]+章\s*评标办法', r'^评标办法前附表', r'^附录:', r'^附录一:', r'^附件:', r'^附件一:',
r'^附表:', r'^附表一:', r'^附录:', r'^附录一:', r'^附件:', r'^附件一:', r'^附表:', r'^附表一:',
]
else:
start_word = r'第[一二三四五六七八九十]+章\s*招标公告|第一卷|招标编号:|招标编号:'
end_phrases=[r'第[一二三四五六七八九十]+章\s*投标人须知',r'投标人须知前附表']
result = convert_to_json(input_path, start_word, end_phrases)
file_name = "clause1.json" if type == 1 else "clause2.json"
output_path = os.path.join(output_folder, file_name)
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(result, f, indent=4, ensure_ascii=False)
post_process_json(output_path)
print(f"投标人须知正文条款提取成json文件: The data has been processed and saved to '{output_path}'.")
return output_path
def post_process_json(json_file_path): #处理一级标题如'5.1'过长的内容 zbtest20
# 读取 JSON 文件
with open(json_file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
processed_data = {}
for key, value in data.items():
# 检查是否是一级标题(如 '5.'),并且其值包含 '\n'
if re.match(r'^\d+\.\s*$', key) and '\n' in value:
# 分割标题和正文
title, content = value.split('\n', 1)
# 添加原来的标题作为 '5.0',其值为原来标题的内容(即 title
processed_data[key] = title.strip()
sub_key = f"{key.rstrip('.')}." + "0" # 自动生成 '5.0',与 '5.' 一致,保证点号的存在
processed_data[sub_key] = title.strip()
# 初始化计数器
sub_count = 1
# 根据子序号 '1.' 或 '1、' 进行分割
sub_sections = re.split(r'(\d+[\.\、])\s*', content)
current_sub_content = ""
for i in range(1, len(sub_sections), 2):
sub_number = sub_sections[i].strip() # 获取子序号
sub_content = sub_sections[i + 1].strip() # 获取内容
# 生成三级标题,如 '5.0.1', '5.0.2'
sub_key_with_number = f"{sub_key}.{sub_count}"
processed_data[sub_key_with_number] = sub_content
sub_count += 1
else:
# 如果没有分割需求,保留原数据
processed_data[key] = value
# 将修改后的数据重新写入到原来的 JSON 文件中
with open(json_file_path, 'w', encoding='utf-8') as file:
json.dump(processed_data, file, ensure_ascii=False, indent=4)
if __name__ == "__main__":
# file_path = 'D:\\flask_project\\flask_app\\static\\output\\cfd4959d-5ea9-4112-8b50-9e543803f029\\ztbfile_tobidders_notice.pdf'
file_path='C:\\Users\\Administrator\\Desktop\\货物标\\output3\\2-招标文件广水市教育局封闭管理_qualification1.pdf'
# start_word = "投标人须知正文"
# end_phrases = [
# r'^第[一二三四五六七八九十]+章\s+评标办法', r'^评标办法前附表', r'^附录:', r'^附录一:', r'^附件:', r'^附件一:',
# r'^附表:', r'^附表一:', r'^附录:', r'^附录一:', r'^附件:', r'^附件一:', r'^附表:', r'^附表一:',
# ]
output_folder = 'C:\\Users\\Administrator\\Desktop\\货物标\\output3\\tmp'
try:
output_path = convert_clause_to_json(file_path,output_folder)
print(f"Final JSON result saved to: {output_path}")
except ValueError as e:
print("Error:", e)

View File

@ -3,11 +3,6 @@ import re
#这个字典可能有嵌套,你需要遍历里面的键名,对键名作判断,而不是键值,具体是这样的:如果处于同一层级的键的数量>1并且键名全由数字或点号组成。那么就将这些序号键名全部删除重新组织成一个字典格式的数据你可以考虑用字符串列表来保持部分平级的数据
#对于同级的键,如果数量>1且键名都统一那么将键名去掉用列表保持它们的键值
#对于同一个字典中,可能存在若干键值对,若它们的键值都是""或者"/" 你就将它们的键值删去,它们的键名用字符串列表保存
def is_numeric_key(key):
# 这个正则表达式匹配由数字、点、括号中的数字或单个字母(小写或大写)组成的字符串,
# 字母后跟数字,或数字后跟字母,单个字母后跟点,但不能是字母-数字-字母的组合
pattern = r'^[\d.]+$|^\(\d+\)$|^\d+$|^[a-zA-Z]$|^[a-zA-Z]\d+$|^\d+[a-zA-Z]$|^[a-zA-Z]\.$'
return re.match(pattern, key) is not None
#zbtest20也有问题
def contains_number_or_index(key, value):
@ -47,56 +42,13 @@ def preprocess_dict(data):
return [preprocess_dict(item) for item in data]
else:
return data
def process_dict(data):
if not isinstance(data, dict):
return data
result = {}
numeric_keys = []
non_numeric_keys = {}
for key, value in data.items():
if is_numeric_key(key):
numeric_keys.append((key, value))
else:
non_numeric_keys[key] = value
if numeric_keys:
result['items'] = [process_dict(item[1]) for item in sorted(numeric_keys)]
for key, value in non_numeric_keys.items():
if isinstance(value, list):
processed_list = []
for item in value:
if isinstance(item, dict):
# 处理字典中只有一个键值对的情况
if len(item) == 1:
processed_item = process_dict(list(item.values())[0])
else:
processed_item = process_dict(item)
else:
processed_item = process_dict(item)
# 如果处理后的项是只包含一个元素的列表,则展平它
if isinstance(processed_item, list) and len(processed_item) == 1:
processed_item = processed_item[0]
processed_list.append(processed_item)
result[key] = processed_list
else:
result[key] = process_dict(value)
if len(result) == 1 and 'items' in result:
return result['items']
return result
# 测试代码
#TODO:同一层全部都是数字才成功删除
#TODO:同一层全部都是数字才成功删除,没需求了
input_data = {
"符合性审查": {
"说明": "1",
"说明": "1ha",
"www":"哈哈",
"审查标准": [
{

View File

@ -388,9 +388,9 @@ def truncate_pdf_multiple(input_path, output_folder):
return truncate_files
# TODO:交通智能系统和招标(1)(1)文件有问题
# TODO:交通智能系统和招标(1)(1)文件有问题 sele=4的时候excludsion有问题
if __name__ == "__main__":
input_path = "C:\\Users\\Administrator\\Desktop\\货物标\\zbfiles"
input_path = "C:\\Users\\Administrator\\Desktop\\货物标\\zbfiles\\2-招标文件2020年广水市中小学教师办公电脑系统及多媒体“班班通”设备采购安装项目.pdf"
output_folder = "C:\\Users\\Administrator\\Desktop\\货物标\\output4"
# truncate_pdf_multiple(input_path,output_folder)
selection = 4 # 例如1 - 商务技术服务要求, 2 - 评标办法, 3 - 资格审查后缀有qualification1和qualification2 4.投标人须知前附表