import concurrent.futures from flask_app.general.llm.通义千问long import qianwen_long, upload_file def multi_threaded_calls(file_id, user_query, num_threads=1): """ 使用多线程同时调用 qianwen_long 函数。 参数: - file_id: 上传文件的 ID - user_query: 用户查询 - num_threads: 并发线程数量(默认 10) """ results = [] # 定义一个辅助函数来调用 qianwen_long 并返回结果 def call_function(thread_id): print(f"线程 {thread_id} 开始调用 qianwen_long") result = qianwen_long(file_id, user_query) # print(f"线程 {thread_id} 调用完成,结果长度:{len(result)}") return result # 使用 ThreadPoolExecutor 来管理线程池 with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor: # 提交所有任务 futures = {executor.submit(call_function, i + 1): i + 1 for i in range(num_threads)} # 处理完成的任务 for future in concurrent.futures.as_completed(futures): thread_id = futures[future] try: data = future.result() results.append(data) print(f"线程 {thread_id} 完成,返回数据:{data[:50]}...") # 只打印前50个字符 except Exception as exc: print(f"线程 {thread_id} 生成异常:{exc}") return results if __name__ == "__main__": # 定义参数 file_path = r"D:\flask_project\flask_app\static\output\output1\8bb07ee1-bcbb-4244-9d1e-367a783f1e40\invalid_del.docx" file_id = upload_file(file_path) # file_id = "file-fe-ah0F0SJUY2cEzPx5nONRBvwd" user_query = "该招标文件的项目概况是?项目基本情况是?请按json格式给我提供信息,键名分别为'项目概况','项目基本情况',若存在嵌套信息,嵌套内容键名以文件中对应字段命名,而嵌套键值必须与原文保持一致,若存在未知信息,在对应的键值中填'未知'。" num_threads = 1 # 并发线程数量 # 执行多线程调用 responses = multi_threaded_calls(file_id, user_query, num_threads) # 打印所有响应 for idx, response in enumerate(responses, start=1): print(f"响应 {idx}: {response}")