import json from flask_app.main.json_utils import clean_json_string from flask_app.main.通义千问long import upload_file, qianwen_long # def combine_technical_and_business(data, target_values1, target_values2): # extracted_data = {} # 根级别存储所有数据 # technical_found = False # business_found = False # # def extract_nested(data, parent_key='', is_technical=False, is_business=False): # nonlocal technical_found, business_found # if isinstance(data, dict): # for key, value in data.items(): # current_key = f"{parent_key}.{key}" if parent_key else key # # # 检查是否为技术标的内容 # if any(target in key for target in target_values1): # if not is_technical: # # 直接存储在根级别 # extracted_data[key] = value # technical_found = True # # 标记为技术标内容并停止进一步处理这个分支 # continue # # # 检查是否为商务标的内容 # elif any(target in key for target in target_values2): # if not is_business: # # 存储在'商务标'分类下 # if '商务标' not in extracted_data: # extracted_data['商务标'] = {} # extracted_data['商务标'][key] = value # business_found = True # # 标记为商务标内容并停止进一步处理这个分支 # continue # # # 如果当前值是字典或列表,且不在技术或商务分类下,继续递归搜索 # if isinstance(value, dict) or isinstance(value, list): # extract_nested(value, current_key, is_technical, is_business) # # elif isinstance(data, list): # for index, item in enumerate(data): # extract_nested(item, f"{parent_key}[{index}]", is_technical, is_business) # # # 开始从顶级递归搜索 # extract_nested(data) # # # 处理未找到匹配的情况 # if not technical_found: # extracted_data['技术标'] = '' # if not business_found: # extracted_data['商务标'] = '' # # return extracted_data def combine_technical_and_business(data, target_values): extracted_data = {} # 根级别存储所有数据 technical_found = False business_found = False def extract_nested(data, parent_key='', is_technical=False, is_business=False): nonlocal technical_found, business_found if isinstance(data, dict): for key, value in data.items(): current_key = f"{parent_key}.{key}" if parent_key else key # 检查是否为技术标的内容 if any(target in key for target in target_values): if not is_technical: extracted_data[key] = value technical_found = True continue # 默认其他所有内容都归为商务标 else: if not is_business: if '商务评分' not in extracted_data: extracted_data['商务评分'] = {} extracted_data['商务评分'][key] = value business_found = True continue if isinstance(value, dict) or isinstance(value, list): extract_nested(value, current_key, is_technical, is_business) elif isinstance(data, list): for index, item in enumerate(data): extract_nested(item, f"{parent_key}[{index}]", is_technical, is_business) extract_nested(data) if not technical_found: extracted_data['技术评分'] = '' if not business_found: extracted_data['商务评分'] = '' return extracted_data def combine_evaluation_standards(truncate2): # 商务标、技术标评分项:千问 file_id = upload_file(truncate2) user_query_2 = ( "根据该文档中的评标办法前附表,请你列出该文件的技术评分,商务评分,投标报价评审标准以及它们对应的具体评分要求,若对应内容中存在其他信息,在键名如'技术评分'中新增子键名'备注'存放该信息。如果评分内容(因素)不是这3个,则返回文档中给定的评分内容(因素)以及它的评分要求。请以json格式返回结果,不要回答有关形式、资格、响应性评审标准的内容") evaluation_res = qianwen_long(file_id, user_query_2) target_values1 = ['技术标','技术部分','设计', '实施',"技术评分"] # target_values2=['投标报价','商务标','商务部分','报价部分','业绩','信誉','分值','计算公式','信用','人员','资格','奖项','认证','荣誉'] # update_json=combine_technical_and_business(clean_json_string(evaluation_res),target_values1,target_values2) update_json = combine_technical_and_business(clean_json_string(evaluation_res), target_values1) # evaluation_combined_res = json.dumps(update_json,ensure_ascii=False,indent=4) # return evaluation_combined_res return update_json #商务标技术标整合 if __name__ == "__main__": truncate2="C:\\Users\\Administrator\\Desktop\\fsdownload\d2a70f3d-5648-4971-9c1f-87d877285304\\ztbfile_evaluation_method.pdf" evaluation_standards_res=combine_evaluation_standards(truncate2) # 从结果中提取"商务标"和"技术标" technical_standards = {"技术评分": evaluation_standards_res.get("技术评分", {})} commercial_standards = {"商务评分": evaluation_standards_res.get("商务评分", {})} # 返回技术标和商务标 print(json.dumps(technical_standards,ensure_ascii=False,indent=4)) print(json.dumps(commercial_standards, ensure_ascii=False, indent=4))