import json def postprocess(data): """递归地转换字典中的值为列表,如果所有键对应的值都是'/', '{}' 或 '未知'""" def convert_dict(value): # 如果所有值是'/', '{}' 或 '未知' if all(v in ['/', '未知', {}] for v in value.values()): return list(value.keys()) else: # 如果不满足条件,则递归处理嵌套的字典 return {k: convert_dict(v) if isinstance(v, dict) else v for k, v in value.items()} # 递归处理顶层数据 return {key: convert_dict(val) if isinstance(val, dict) else val for key, val in data.items()} def all_postprocess(data): temp=restructure_data(data) processed_data = {} for key, value_list in temp.items(): processed_data[key] = remove_common_prefixes(value_list) return processed_data def detect_depth(data): """ Detects the depth of the nested dictionary. """ if isinstance(data, dict): return 1 + max((detect_depth(v) for v in data.values()), default=0) elif isinstance(data, list): return 1 # Lists are considered the terminal layer else: return 0 # Base case for non-nested elements def restructure_data(data): """ Restructure data to normalize levels of nesting. If depth is 2 throughout, return as-is. If both 2 and 3 levels exist, restructure to align to 3-layer format. """ # Check if data contains mixed 2-layer and 3-layer structures has_two_layers = False has_three_layers = False for key, value in data.items(): if isinstance(value, dict): has_three_layers = True elif isinstance(value, list): has_two_layers = True else: raise ValueError(f"Unexpected data format for key '{key}': {type(value)}") # If only 2-layer, return as-is if has_two_layers and not has_three_layers: return data # If mixed or only 3-layer, normalize to 3-layer structured_data = {} for key, value in data.items(): if isinstance(value, dict): # Already a 3-layer structure, keep as is structured_data[key] = value elif isinstance(value, list): # Convert 2-layer structure to 3-layer structured_data[key] = {key: value} return structured_data # 定义获取所有以':'结尾的前缀的函数 def get_prefixes(s): prefixes = [] for i in range(len(s)): if s[i] == ':': prefixes.append(s[:i+1]) return prefixes # 定义删除公共前缀的函数 def remove_common_prefixes(string_list): # 构建前缀到字符串集合的映射 prefix_to_strings = {} for s in string_list: prefixes = get_prefixes(s) unique_prefixes = set(prefixes) for prefix in unique_prefixes: if prefix not in prefix_to_strings: prefix_to_strings[prefix] = set() prefix_to_strings[prefix].add(s) # 找出至少在两个字符串中出现的前缀 prefixes_occuring_in_multiple_strings = [prefix for prefix, strings in prefix_to_strings.items() if len(strings) >=2] # 对每个字符串,找到其匹配的最长前缀并删除 new_string_list = [] for s in string_list: applicable_prefixes = [prefix for prefix in prefixes_occuring_in_multiple_strings if s.startswith(prefix)] if applicable_prefixes: # 找到最长的前缀 longest_prefix = max(applicable_prefixes, key=len) # 删除前缀 new_s = s[len(longest_prefix):] new_string_list.append(new_s) else: new_string_list.append(s) return new_string_list if __name__ == "__main__": # 示例数据 sample_data = { "交通信号机": [ "★应采用区域控制信号机,并应与广水市交通信号控制系统兼容,信号机能接入已有系统平台,实现联网优化功能。", "1、控制功能:(1)区域协调控制:可对单个孤立交叉口、干道多个交叉口和关联性较强的交叉口群进行综合性地信号控制。", "1、控制功能:(2)线性协调控制:可对干道多个相邻交叉口进行协调控制。", "1、控制功能:(3)多时段控制:可根据交叉口的交通状况,将每天划分为多个不同的时段,每个时段配置不同的控制方案,能设置至少 10个时段、10种以上不同控制方案,能根据不同周日类型对方案进行调整。信号机能够根据内置时钟选择各个时段的控制方案,实现交叉口的合理控制。", "2、采集功能:(1)信号机支持接入线圈、地磁、视频、微波、超声波检测器、RFID等多种检测方式。", "2、采集功能:(2)信号机支持交通信息采集与统计,并支持交通流量共享。", "3、运维功能:(1)信号机能够自动检测地磁故障,若故障,能够自动上传故障信息至监控中心。" ], "高清视频抓拍像机": [ "1:摄像机:有效像素:≥900W像素", "1:摄像机:最低照度:彩色≤0.001lx", "1:摄像机:传感器类型:≥1英寸全局曝光 COMS/GMOS/GS COMS", "1:摄像机:电子快门:至少满足 1/25s至 1/100,000s,可调", "2:视频图像:视频压缩标准:至少支持 H264、H265等", "2:视频图像:视频分辨率:≥4096×2160,向下可设置", ], } # 处理数据 result = all_postprocess(sample_data) # 输出处理结果 print(json.dumps(result,ensure_ascii=False,indent=4))