143 lines
7.3 KiB
Python
143 lines
7.3 KiB
Python
# -*- encoding:utf-8 -*-
|
||
import json
|
||
|
||
from flask_app.main.json_utils import clean_json_string
|
||
from flask_app.main.通义千问long import upload_file, qianwen_long
|
||
|
||
# def combine_technical_and_business(data, target_values1, target_values2):
|
||
# extracted_data = {} # 根级别存储所有数据
|
||
# technical_found = False
|
||
# business_found = False
|
||
#
|
||
# def extract_nested(data, parent_key='', is_technical=False, is_business=False):
|
||
# nonlocal technical_found, business_found
|
||
# if isinstance(data, dict):
|
||
# for key, value in data.items():
|
||
# current_key = f"{parent_key}.{key}" if parent_key else key
|
||
#
|
||
# # 检查是否为技术标的内容
|
||
# if any(target in key for target in target_values1):
|
||
# if not is_technical:
|
||
# # 直接存储在根级别
|
||
# extracted_data[key] = value
|
||
# technical_found = True
|
||
# # 标记为技术标内容并停止进一步处理这个分支
|
||
# continue
|
||
#
|
||
# # 检查是否为商务标的内容
|
||
# elif any(target in key for target in target_values2):
|
||
# if not is_business:
|
||
# # 存储在'商务标'分类下
|
||
# if '商务标' not in extracted_data:
|
||
# extracted_data['商务标'] = {}
|
||
# extracted_data['商务标'][key] = value
|
||
# business_found = True
|
||
# # 标记为商务标内容并停止进一步处理这个分支
|
||
# continue
|
||
#
|
||
# # 如果当前值是字典或列表,且不在技术或商务分类下,继续递归搜索
|
||
# if isinstance(value, dict) or isinstance(value, list):
|
||
# extract_nested(value, current_key, is_technical, is_business)
|
||
#
|
||
# elif isinstance(data, list):
|
||
# for index, item in enumerate(data):
|
||
# extract_nested(item, f"{parent_key}[{index}]", is_technical, is_business)
|
||
#
|
||
# # 开始从顶级递归搜索
|
||
# extract_nested(data)
|
||
#
|
||
# # 处理未找到匹配的情况
|
||
# if not technical_found:
|
||
# extracted_data['技术标'] = ''
|
||
# if not business_found:
|
||
# extracted_data['商务标'] = ''
|
||
#
|
||
# return extracted_data
|
||
def remove_unknown_scores(data):
|
||
if isinstance(data, dict):
|
||
return {
|
||
k: remove_unknown_scores(v)
|
||
for k, v in data.items()
|
||
if not (k == "评分" and v in ["未知", "/", ""])
|
||
}
|
||
elif isinstance(data, list):
|
||
return [remove_unknown_scores(item) for item in data]
|
||
else:
|
||
return data
|
||
def combine_technical_and_business(data, target_values):
|
||
data=remove_unknown_scores(data)
|
||
extracted_data = {} # 根级别存储所有数据
|
||
technical_found = False
|
||
business_found = False
|
||
|
||
def extract_nested(data, parent_key='', is_technical=False, is_business=False):
|
||
nonlocal technical_found, business_found
|
||
if isinstance(data, dict):
|
||
for key, value in data.items():
|
||
current_key = f"{parent_key}.{key}" if parent_key else key
|
||
|
||
# 检查是否为技术标的内容
|
||
if any(target in key for target in target_values):
|
||
if not is_technical:
|
||
extracted_data[key] = value
|
||
technical_found = True
|
||
continue
|
||
|
||
# 默认其他所有内容都归为商务标
|
||
else:
|
||
if not is_business:
|
||
if '商务评分' not in extracted_data:
|
||
extracted_data['商务评分'] = {}
|
||
extracted_data['商务评分'][key] = value
|
||
business_found = True
|
||
continue
|
||
|
||
if isinstance(value, dict) or isinstance(value, list):
|
||
extract_nested(value, current_key, is_technical, is_business)
|
||
|
||
elif isinstance(data, list):
|
||
for index, item in enumerate(data):
|
||
extract_nested(item, f"{parent_key}[{index}]", is_technical, is_business)
|
||
|
||
extract_nested(data)
|
||
|
||
if not technical_found:
|
||
extracted_data['技术评分'] = ''
|
||
if not business_found:
|
||
extracted_data['商务评分'] = ''
|
||
|
||
return extracted_data
|
||
def combine_evaluation_standards(truncate2):
|
||
# 商务标、技术标评分项:千问
|
||
file_id = upload_file(truncate2)
|
||
# user_query_2 = (
|
||
# "根据该文档中的评标办法前附表,请你列出该文件的技术评分,商务评分,投标报价评审标准以及它们对应的具体评分要求,若对应内容中存在其他信息,在键名如'技术评分'中新增子键名'备注'存放该信息。如果评分内容(因素)不是这3个,则返回文档中给定的评分内容(因素)以及它的评分要求。请以json格式返回结果,不要回答有关形式、资格、响应性评审标准的内容")
|
||
user_query_2 = (
|
||
"""
|
||
根据该文档中的评标办法前附表,请你列出该文件的技术评分,商务评分,投标报价评审标准以及它们对应的具体评分要求,请以json格式返回结果,请在这三大块评分中分别用若干键值对表示具体要求,其内层的键名为'评分'及'要求',若这三大块评分中存在其他信息,则在相应评分大块中新增键名'备注'存放该信息,键值为具体的要求,否则不需要。如果评分内容(因素)不是这3个,则返回文档中给定的评分内容(因素)以及它们的具体评分要求。不要回答有关形式、资格、响应性评审标准的内容,若存在未知信息,填充'未知'。以下为示例输出:
|
||
"技术评分": {
|
||
"主要监理岗位的职责": {
|
||
"评分": "4分",
|
||
"要求": "1、总监理工程师的职责全面、清晰、合理得 1.2-2分;一般的1.2分。2、其他主要监理人员及岗位的职责全面、清晰、合理得 1.2-2分;一般的 1.2分。"
|
||
}
|
||
}
|
||
"""
|
||
)
|
||
|
||
evaluation_res = qianwen_long(file_id, user_query_2)
|
||
target_values1 = ['技术标','技术部分','设计', '实施',"技术评分"]
|
||
# target_values2=['投标报价','商务标','商务部分','报价部分','业绩','信誉','分值','计算公式','信用','人员','资格','奖项','认证','荣誉']
|
||
# update_json=combine_technical_and_business(clean_json_string(evaluation_res),target_values1,target_values2)
|
||
update_json = combine_technical_and_business(clean_json_string(evaluation_res), target_values1)
|
||
# evaluation_combined_res = json.dumps(update_json,ensure_ascii=False,indent=4)
|
||
# return evaluation_combined_res
|
||
return update_json #商务标技术标整合
|
||
if __name__ == "__main__":
|
||
truncate2="C:\\Users\\Administrator\\Desktop\\招标文件\\招标test文件夹\\zbtest1_evaluation_method.pdf"
|
||
evaluation_standards_res=combine_evaluation_standards(truncate2)
|
||
# 从结果中提取"商务标"和"技术标"
|
||
technical_standards = {"技术评分": evaluation_standards_res.get("技术评分", {})}
|
||
commercial_standards = {"商务评分": evaluation_standards_res.get("商务评分", {})}
|
||
# 返回技术标和商务标
|
||
print(json.dumps(technical_standards,ensure_ascii=False,indent=4))
|
||
print(json.dumps(commercial_standards, ensure_ascii=False, indent=4)) |