zbparse/flask_app/main/投标人须知正文提取指定内容.py
2024-10-19 12:53:25 +08:00

288 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import re
# 对于每个target_value元素如果有完美匹配json_data中的键那就加入这个完美匹配的键名否则把全部模糊匹配到的键名都加入
def find_keys_by_value(target_value, json_data):
matched_keys = [k for k, v in json_data.items() if v == target_value] # 首先检查 JSON 中的每个键值对,如果值完全等于目标值,则将这些键收集起来。
if not matched_keys:
matched_keys = [k for k, v in json_data.items() if
isinstance(v, str) and v.startswith(target_value)] # 如果没有找到完全匹配的键,它会检查字符串类型的值是否以目标值开头,并收集这些键。
return matched_keys # eg:[3.1,3.1.1,3.1.2,3.2...]
# 定义查找以特定前缀开始的键的函数eg:若match_keys中有3.1那么以3.1为前缀的键都会被找出来如3.1.1 3.1.2...
def find_keys_with_prefix(key_prefix, json_data):
subheadings = [k for k in json_data if k.startswith(key_prefix)]
return subheadings
# 从完整的json文件中读取所需数据eg:投标、评标
# def extract_json(data, target_values):
# results = {}
#
# # 遍历所有目标值
# for target_value in target_values:
# # 找到所有与目标值匹配的键
# matched_keys = find_keys_by_value(target_value, data)
#
# for key in matched_keys:
# # 查找所有以该键为前缀的子键,限制只提取直接子项
# key_and_subheadings = find_keys_with_prefix(key, data)
#
# for subkey in key_and_subheadings:
# # 如果子键有多级结构(比如 '7.2.1'),并且是直接子项
# if "." in subkey:
# parent_key = subkey.rsplit('.', 1)[0]
# top_level_key = parent_key.split('.')[0] + '.'
#
# # 确保顶级键不会重复添加
# if top_level_key not in results:
# results[top_level_key] = data[top_level_key]
#
# # 添加或更新父级键
# if parent_key not in results:
# if parent_key in data:
# results[parent_key] = data[parent_key]
#
# # 添加当前子键和它的值
# if subkey in data:
# results[subkey] = data[subkey]
#
# return results
def extract_json(data, target_values):
results = {}
for target_value in target_values:
matched_keys = find_keys_by_value(target_value, data)
for key in matched_keys:
key_and_subheadings = find_keys_with_prefix(key, data)
for subkey in key_and_subheadings:
if "." in subkey:
parent_key = subkey.rsplit('.', 1)[0]
top_level_key = parent_key.split('.')[0] + '.'
# 特别处理定标相关的顶级键,确保不会重复添加其他键
if top_level_key not in results:
results[top_level_key] = target_value
# 添加或更新父级键
if parent_key not in results:
if parent_key in data:
results[parent_key] = data[parent_key]
# 添加当前键
results[subkey] = data[subkey]
return results
def sort_clean_data_keys(data):
# 预处理:删除键名中的空格
def preprocess_key(key):
return re.sub(r'\s+', '', key)
# 将键转换成由整数构成的元组,作为排序依据
def key_func(key):
return tuple(int(part) for part in re.split(r'\D+', key) if part)
# 创建一个新的字典,键名经过预处理
preprocessed_data = {preprocess_key(key): value for key, value in data.items()}
# 对预处理后的字典键进行排序
sorted_keys = sorted(preprocessed_data.keys(), key=key_func)
# 创建一个新的字典,按照排序后的键添加键值对
sorted_data = {key: preprocessed_data[key] for key in sorted_keys}
return sorted_data
# 转换结构化的JSON数据
def transform_json(data):
result = {}
temp = {0: result} # 初始化根字典
# 首先,创建一个临时字典用于检查是否存在三级标题
has_subkey = {}
for key in data.keys():
parts = key.split('.')
if len(parts) > 2 and parts[1]:
parent_key = parts[0] + '.' + parts[1]
has_subkey[parent_key] = True
for key, value in data.items():
match = re.match(r'(\d+)(?:\.(\d+))?(?:\.(\d+))?', key)
if match:
levels = [int(l) for l in match.groups() if l is not None]
if (len(levels) - 1) in temp:
parent = temp[len(levels) - 1]
else:
print(f"No parent found at level {len(levels) - 1} for key '{key}'. Check the data structure.")
continue
if len(levels) == 1: # 一级标题
# 优先按 '\n' 拆分
if '\n' in value:
new_key, *new_value = value.split('\n', 1)
new_key = new_key.strip()
new_value = new_value[0].strip() if new_value else ""
# 如果没有 '\n',再检查 ':' 或 '',并进行拆分
elif ':' in value or '' in value:
delimiter = ':' if ':' in value else ''
new_key, new_value = value.split(delimiter, 1)
new_key = new_key.strip()
new_value = new_value.strip()
else:
new_key = value.strip()
new_value = ""
parent[new_key] = {}
if new_value:
parent[new_key][new_key] = new_value # 使用 new_key 作为键名,而不是固定的 "content"
temp[len(levels)] = parent[new_key]
elif len(levels) == 2: # 二级标题
new_key, *new_value = value.split('\n', 1)
new_key = new_key.strip()
new_value = new_value[0].strip() if new_value else ""
if f"{levels[0]}.{levels[1]}" in has_subkey:
parent[new_key] = [new_value] if new_value else []
else:
parent[new_key] = new_value
temp[len(levels)] = parent[new_key]
else: # 三级标题
if isinstance(parent, dict):
parent_key = list(parent.keys())[-1]
if isinstance(parent[parent_key], list):
parent[parent_key].append(value)
elif parent[parent_key]:
parent[parent_key] = [parent[parent_key], value]
else:
parent[parent_key] = [value]
elif isinstance(parent, list):
parent.append(value)
def remove_single_item_lists(node):
if isinstance(node, dict):
for key in list(node.keys()):
node[key] = remove_single_item_lists(node[key])
if isinstance(node[key], list) and len(node[key]) == 1:
node[key] = node[key][0]
return node
return remove_single_item_lists(result)
# 主要是处理键值中若存在若干序号且每个序号块的内容>=50字符的时候用列表表示。
def post_process(value):
# 如果传入的是非字符串值,直接返回原值
if not isinstance(value, str):
return value
# 定义可能的分割模式及其正则表达式
patterns = [
(r'\d+、', r'(?=\d+、)'), # 匹配 '1、'
(r'[(]\d+[)]', r'(?=[(]\d+[)])'), # 匹配 '(1)' 或 '1'
(r'\d+\.', r'(?=\d+\.)'), # 匹配 '1.'
(r'[一二三四五六七八九十]、', r'(?=[一二三四五六七八九十]、)'), # 匹配 '一、'、'二、' 等
(r'[一二三四五六七八九十]\.', r'(?=[一二三四五六七八九十]\.)') # 匹配 '一.'、'二.' 等
]
# 初始化用于保存最早匹配到的模式及其位置
first_match = None
first_match_position = len(value) # 初始值设为文本长度,确保任何匹配都会更新它
# 遍历所有模式,找到第一个出现的位置
for search_pattern, split_pattern_candidate in patterns:
match = re.search(search_pattern, value)
if match:
# 如果这个匹配的位置比当前记录的更靠前,更新匹配信息
if match.start() < first_match_position:
first_match = split_pattern_candidate
first_match_position = match.start()
# 如果找到了最早出现的匹配模式,使用它来分割文本
if first_match:
blocks = re.split(first_match, value)
else:
# 如果没有匹配的模式,保留原文本
blocks = [value]
processed_blocks = []
for block in blocks:
if not block:
continue
# 计算中英文字符总数如果大于50则加入列表
if block and len(re.findall(r'[\u4e00-\u9fff\w]', block)) >= 50:
processed_blocks.append(block.strip())
else:
# 如果发现有块长度小于50返回原数据
return value
# 如果所有的块都符合条件,返回分割后的列表
return processed_blocks
"""
递归处理嵌套的数据结构(字典和列表)。
对最内层的字符串值应用 post_process 函数。
post_process 函数尝试将长字符串按特定模式分割成块每块至少包含50个中英文字符。
如果字典中所有值都是 """/" 或空列表,则返回''的列表。
"""
def process_nested_data(data):
# 先检查是否所有值都是 ""、"/" 或空列表
if isinstance(data, dict) and all(v == "" or v == "/" or (isinstance(v, list) and not v) for v in data.values()):
return list(data.keys())
# 递归遍历字典,处理最内层的字符串
if isinstance(data, dict):
# 如果当前项是字典,继续递归遍历其键值对
result = {}
for key, value in data.items():
processed_value = process_nested_data(value)
# 如果处理后的值是只有一个元素的列表,就直接使用该元素
if isinstance(processed_value, list) and len(processed_value) == 1:
result[key] = processed_value[0]
else:
result[key] = processed_value
return result
elif isinstance(data, list):
# 如果是列表,直接返回列表,保持原样
return data
else:
# 到达最内层,处理非字典和非列表的元素(字符串)
return post_process(data)
# 读取JSON数据提取内容转换结构并打印结果
def extract_from_notice(clause_path, type):
if type == 1:
target_values = ["投标","投标文件","响应文件"]
elif type == 2:
target_values = ["开标", "评标", "定标","磋商程序","中标"]
elif type == 3:
target_values = ["重新招标、不再招标和终止招标", "重新招标", "不再招标", "终止招标"]
elif type == 4:
target_values = ["评标"] # 测试
else:
raise ValueError(
"Invalid type specified. Use 1 for '投标文件, 投标' or 2 for '开标, 评标, 定标'or 3 for '重新招标'")
with open(clause_path, 'r', encoding='utf-8') as file:
data = json.load(file)
extracted_data = extract_json(data, target_values) # 读取json
# print(json.dumps(extracted_data,ensure_ascii=False,indent=4))
sorted_data = sort_clean_data_keys(extracted_data) # 对输入的字典 data 的键进行预处理和排序
transformed_data = transform_json(sorted_data)
# print(json.dumps(transformed_data,ensure_ascii=False,indent=4))
final_result = process_nested_data(transformed_data)
return final_result
# TODO: extract_json新版本仍有问题未知。
if __name__ == "__main__":
# file_path = 'C:\\Users\\Administrator\\Desktop\\fsdownload\\3bffaa84-2434-4bd0-a8ee-5c234ccd7fa0\\clause1.json'
file_path="C:\\Users\\Administrator\\Desktop\\招标文件\\special_output\\clause1.json"
try:
res = extract_from_notice(file_path, 1) # 可以改变此处的 type 参数测试不同的场景
res2 = json.dumps(res, ensure_ascii=False, indent=4)
print(res2)
except ValueError as e:
print(e)